Мы уже говорили о том, что кусок обыкновенного угля можно превратить во взрывчатое вещество, если его тщательно измельчить и распылить в воздухе. Сделав то же самое с куском дерева, можно также получить спо–собную ко взрыву пылевоздушную смесь. Взрыв будет ещё сильнее, если горючий порошок смешать с жидким воздухом или с жидким кислородом.

Таким образом, простейшим способом получения взрывчатого вещества является механическое смешение тонко измельчённых горючих веществ с кислородом.

Смеси жидкого кислорода с сажен, торфяной мукой и другими горючими веществами, способными хорошо впитывать жидкий кислород, начали применять в качестве взрывчатых веществ ещё в конце прошлого столетия. В ограниченной степени они используются для взрывных работ и сейчас.

Положительной стороной этих взрывчатых веществ — они называются оксиликвитами — является обилие и доступность сырья: залежи торфа широко распространены, а жидкий кислород получают из воздуха.

Изготовление оксиликвитов очень простое и производится на месте выполнения взрывных работ. Бумажная гильза, наполненная горючим порошком, погружается на некоторое время для Пропитки В ЖИДКИЙ КИслород. По–этому в районах, отдалённых от заводов взрывчатых веществ, применение оксиликвитов экономически выгодно: отпадают расходы на перевозку и хранение взрывчатых веществ.

Однако оксиликвиты имеют существенный недостаток. Жидкий кислород очень летуч, он кипит, быстро превращаясь в пар, уже при температуре 183 градуса ниже нуля. Поэтому срок «жизни» оксиликвитных патронов малого диаметра измеряется минутами. Если производство взрыва почему–либо задержалось, то кислород может настолько улетучиться, что патроны потеряют способность к взрыву. Это препятствует широкому применению оксиликвитов, а для некоторых целей, например для снаряжения большинства видов боеприпасов, делает их применение просто невозможным.

Этот недостаток устранён в тех взрывчатых веществах, в которых горючие вещества смешиваются не с самим кислородом, а со специальными нелетучими «поставщиками» кислорода. Известен целый ряд химических соединений, которые в своём составе содержат много кислорода. В смеси с горючими веществами такие богатые кислородом вещества обычно непрочны: при поджигании, а иногда и просто от удара они распадаются, выделяя кислород, который и окисляет горючие вещества. Это свойство даёт возможность использовать их в качестве «поставщиков» кислорода. Здесь уже нет опасности улетучивания кислорода,

В качестве примера таких взрывчатых веществ может служить старейшее из них — чёрный порох. Он состоит из горючего (уголь + сера) и окислителя — калиевой селитры. Формула калиевой селитры — KNO з — показывает, что в ней на три атома кислорода приходится один атом азота и один атом калия. При взрыве селитра разлагается, азот выделяется в виде газа, калий дает окись калия КзО (образующую затем углекислую и сернокислую соли калия), а оставшийся кислород окисляет уголь и серу, образуя углекислоту и другие газы.

Однако применение в качестве окислителя калиевой селитры невыгодно; «свободного» кислорода в ней содержится только 40 процентов, и, кроме того, на разложение калиевой селитры требуется значительное количество энергии — 324 большие калории на килограмм, По этой причине теплота взрыва чёрного пороха сравнительно небольшая — около 700 больших калорий иа килограмм, в то время как при взрыве смеси угля с жидким кислородом выделяется 2200 больших калорий.

Помимо этого, чёрный порох при взрыве только наполовину превращается в газы, остальные продукты взрыва являются твёрдыми веществами.

По этим причинам взрывное действие чёрного пороха малб, и в настоящее время он почти полностью вытеснен во взрывных работах взрывчатыми смесями, главной составной частью которых является аммиачная селитра (NH 4 NO з ). Такие смеси имеют большую теплоту взрыва и при взрыве полностью превращаются в газы.

Если механические смеси состоят из твёрдых окислителя и горючего, то их необходимо сильно измельчать и тщательно смешивать. Химическая реакция вначале протекает только на поверхности частиц, и чем больше эта поверхность, тем быстрее идёт реакция, а только при большой скорости реакция, как мы видели, имеет характер взрыва.

Широко применяется при получении взрывчатых веществ другой способ сочетания горючих элементов й кислорода, обеспечивающий идеальную равномерность состава. Этот способ заключается в получении таких химических соединений, в молекулу которых входят и горючие элементы (углерод и водород) и кислород. Сгорание таких взрывчатых веществ происходит за счёт собственных внутренних запасов кислорода, входящего в молекулы соединения.

Например, клетчатка (C6H10O5), являющаяся главной составной частью древесины, содержит много углерода и водорода, а азотная кислота (HNO 3 ) — много кислорода. При химическом взаимодействии клетчатки и азотной кислоты в определенных условиях и образуется нитроклетчатка, о которой мы говорили выше, Это химическое соединение содержит в своей молекуле как углерод и водород, так и кислород. При этом кислород в большей своей части связан с углеродом не непосредственно, а через атом азота[7] ). Такое соединение относительно непрочно и при сильном воздействии, например при ударе, слабая связь между кислородом и азотом разрывается, и кислород соединяется с углеродом и водородом с образованием углекислоты и воды и большим выделением тепла. Происходит взрыв.

Химические соединения, содержащие в своих молекулах атомы горючих элементов и кислорода, разъединённые азотом, могут быть получены не только из клетчатки. Обрабатывая глицерин азотной кислотой, получают мас–лянистую, не растворимую в воде жидкость — нитроглицерин, главную составную часть динамитов.

Сильнейший динамит — гремучий студень — готовится из 93 частей нитроглицерина и 7 частей определённого вида нитроклетчатки, растворяющейся в нём с образованием полупрозрачной упругой и вязкой желатины, напоминающей, как показывает само название, студень.

Более распространены желатин–динамиты, которые содержат, кроме нитроглицерина и нитроклетчатки, также селитру и древесную муку.

Динамиты имеют большую энергию взрыва и принадлежат к числу самых сильных взрывчатых веществ. До Великой Октябрьской социалистической революции они были основным типом взрывчатых веществ в горной промышленности нашей страны. Теперь динамты у нас совершенно не применяются из–за своей относительно высокой чувствительности к удару и нагреву, которая делает их опасными в применении.

Иначе обстоит дело в капиталистических странах. Стремление хозяев шахт и владельцев заводов взрывчатых веществ к получению максимальных прибылей, отсутствие заботы о безопасности рабочих тормозят прогресс и в области взрывного дела. До сих пор в горном деле там широко применяются динамиты. Из–за этого ежегодно гибнут и получают тяжёлые увечья тысячи горняков.

В Советском Союзе учёными разработаны новые типы взрывчатых веществ, которые не уступают по эффективности динамитам, но намного безопаснее их.

Из чего же получаются эти взрывчатые вещества?

При сухой перегонке каменного угля, а также при переработке нефти получаются разнообразные углеводороды — соединения, состоящие из углерода и водорода в различных соотношениях. Например, при сухой перегонке угля из одной его тонны получается около 5 килограммов бензола, 0,05 килограмма фенола и до 1,5 килограмма толуола. Путём взаимодействия с азотной кислотой могут быть получены нитросоединения, углеводородов, содержащие кислород, соединённый с углеродом через азот.

Наиболее широко применяется нитросоединение одного из углеводородов — толуола — тринитротолуол, или тротил. Он представляет собой светложёлтый порошок, плавящийся при 80 градусах в прозрачную густую жёлтую жидкость, которая при охлаждении превращается в твёрдую массу, напоминающую застывшую серу.

Тротил является основным взрывчатым веществом для военных целей. Часто его применяют не в чистом виде, а в виде смесей с аммиачной селитрой. Такие смеси являются основным типом взрывчатых веществ для горной промышленности.

Аммиачная селитра — белый кристаллический порошок, легко поглощающий влагу из воздуха, — получается лри соединении азотной кислоты и аммиака и широко применяется в качестве основного азотистого удобрения. Аммиак готовится из азота и водорода[8] ) и является промежуточным продуктом при производстве азотной кислоты, получаемой окислением аммиака кислородом воздуха.

Таким образом, исходными продуктами для получения азотной кислоты являются вода и воздух, имеющиеся в неограниченных количествах, и размеры её производства ограничиваются только мощностью заводов. Давно уже стало известно, что аммиачная селитра даже сама по себе способна к взрыву. Это и неудивительно. Ведь в аммиачной селитре содержится и водород аммиака и кислород азотной кислоты; при их соединении выделяется достаточно тепла и газов, чтобы реакция могла идти со взрывом. Однако сила этого взрыва невелика, так как в аммиачной селитре кислорода содержится значительно больше, чем его нужно для окисления водорода, и часть кислорода при взрыве остаётся неиспользованной. Если к аммиачной селитре добавить в тонко измельчённом виде какое–либо вещество, содержащее много горючих элементов, например торфяную муку, муку сосновой коры, муку хлопкового жмыха и т. п., то углерод и водород добавленного вещества будут окисляться избыточным кислородом аммиачной селитры — произойдёт дополнительное выделение тепла и увеличится сила взрыва. Такие взрывчатые вещества — динаммоны — имеют значительное применение в народном хозяйстве, особенно тогда, когда нужно экономить тротил.

За разработку взрывчатых веществ этого типа группа инженеров — В. Н, Красельщик, Н, Е. Яременко и др. — была удостоена Сталинской премии.

Недостатком смесей аммиачной селитры с невзрывчатыми горючими вроде торфа является нх малая чувствительность к возбуждению взрыва. По этой причине более целесообразно применять в качестве добавки к селитре такие вещества, которые не только содержат много горючих элементов, но и сами являются взрывчатыми–Таков, например, тот же тротил, в котором кислорода меньше, чем нужно для окисления углерода и водорода.

Смешивая аммиачную селитру с тротилом в соотношении 80:20, получают порошкообразное взрывчатое вещество — амматол 80/20 или аммонит №6; в нём содержание кислорода как раз такое, какое необходимо для полного окисления углерода и водорода. Благодаря наличию в ней взрывчатого тротила такая смесь легко и надёжно взрывается в обычных условиях применения и в то же время достаточно безопасна в обращении.

Эта смесь значительно дешевле, чем тротил; кроме того, её можно применять также для взрывных работ под землёй, для которых тротил не может быть использован, так как он образует при взрыве много ядовитой окиси углерода (угарного газа), отравляющей воздух шахты.

Особые и наиболее строгие требования предъявляются к аммонитам, применяемым в угольных шахтах. В этих шахтах, если они сухие, всегда имеется угольная пыль; кроме того, из угля выделяется горючий газ — метан, образующий в определённых соотношениях с воздухом смеси, способные к взрыву. При хорошей вентиляции весь метан, выделяющийся из угля, разбавляется воздухом настолько, что смесь утрачивает способность к взрыву. Можно также предотвратить образование взрывоопасного пылевоздушного облака, увлажняя угольную пыль или покрывая поверхность выработки слоем негорючей пыли, а также другими способами.

Кроме этого, во взрывоопасных угольных шахтах запрещается применять обычные аммониты, при взрыве которых образуются газы с высокой температурой, могущие вызвать взрыв метановоздушной или пылевоздушной смеси. Для взрывных работ в таких шахтах допускается применение только специальных аммонитов, в состав которых входят значительные количества поваренной соли, служащей для понижения температуры газов взрыва и уменьшения их способности возбуждать взрыв метановоздушных и пылевых смесей.

Применяя все эти меры, наша угольная промышленность добилась резкого повышения уровня безопасности работ в ваших шахтах.

За рубежом, особенно в США, где государство не требует от шахтовладельцев принимать меры для предупреждения взрывов, техника безопасности стоит на очень низком уровне. Хозяева шахт часто не выполняют самых элементарных требований по обеспечению безопасности работы. Это приводит к тому, что на американских угольных шахтах несчастные случаи с большим числом жертв стали систематическим и массовым явлением. Так, за 13 лет, с 1930 по 1943 год, в угольной промышленности США погибло 24 тысячи горняков, а общее число убитых, раненых и искалеченных составило 250 000.

Особенно увеличились несчастные случаи в США за последнее время в связи с бешеной подготовкой к третьей мировой войне, проводимой американскими империалистами. В марте 1947 года на шахте «Сентралия 5» в штате Иллинойс при взрыве погибло 111 горняков, а на шахт£ «Ориент 2» в Уэст–Франкфорте 21 декабря 1951 года при подземном взрыве газа было погребено 119 рабочих. Бывший президент Трумэн вынужден был признать, что причиной взрыва было грубое нарушение шахтовладельцами правил техники безопасности.

Всего за первые 10 месяцев 1951 года в угольных шахтах Америки произошло свыше 25 тысяч несчастных случаев с рабочими.

Очень тяжёлые последствия имеют взрывы газа или пыли с воздухом. Такие взрывы нередко принимают катастрофический характер. На одной из шахт Франции взрыв угольной пыли, возникший от взрывных работ, производившихся без необходимых мер предосторожности, распространился на выработки общим протяжением более

100 километров; при этом погибли 1099 из 1664 горняков, работавших в шахте.

В шахте Гресфорд в Англии в 1934 году взрыв метана и угольной пыли привёл к гибели 263 человек из 269 работавших в шахте.

Бельгийские газеты в нюне 1952 года сообщали о ряде взрывов, происходивших на шахтах вследствие несоблюдения техники безопасности. Так, крупная катастрофа произошла на шахте № 25 «Монсо–Фонтен» в Куйэ; в результате взрыва было убито 10 шахтёров и двое ранено, В заявлении национального комитета профсоюза горняков говорилось: «район Шарлеруа снова в трауре в результате двух катастроф на шахтах, одна из которых на шахте № 25 «Монсо–Фонтен» наиболее ужасна: 12 шахтёров поплатились своей жизнью за дьявольскую погоню шахтовладельцев за прибылью».

12 августа 1952 года взрыв газа произошёл на угольной шахте «Шнейдер» около г. Валансьенна во Франции. Погибло четыре шахтёра и 17 были тяжело ранены.

Мы рассмотрели дьа способа изготовления взрывчатых веществ: смешение горючих веществ с окислителями и получение химических соединений, в молекулу которых входят атомы горючих элементов и кислорода, или смесей таких соединений. В обоих случаях тепло при взрыве выделяется за счёт реакции окисления кислородом углерода и водорода.

Существуют также взрывчатые вещества, при взрыве которых тепло выделяется не за счёт реакции окисления кислородом, а за счёт других реакций.

Например, при определённых условиях можно получить соединение азота с водородом — азотистоводородную кислоту (NH 3 ). Образование этого соединения из азота и водорода сопряжено со значительной затратой энергии — около 1500 больших калорий на килограмм кислоты. Соответственно этому распад азотистоводородной кислоты на азот и водород сопровождается большим выделением тепла и может протекать в форме взрыва.

Сама азотистоводородная кислота — жидкость с низкой температурой кипения (37 градусов), очень чувствительная к малейшим воздействиям, крайне опасная в обращении и поэтому не может применяться в качестве взрывчатого вещества. Практическое значение имеют соединения её с некоторыми металлами, в первую очередь свинцовая соль азотистоводородной кислоты — азид свинца, который является очень эффективным инициирующим взрывчатым веществом.

Более 20 лет назад проф. Солонина и инженер Владимиров разработали и внедрили в производство безопасный способ изготовления азида свинца и снаряжения им капсюлей–детонаторов.

Реакция взрыва азида свинца представляет собой распад молекулы азида, состоящей из атома свинца и шести атомов азота, на свинец и азот и сопровождается так же, как и в случае распада азотистоводородноЙ кислоты, значительным выделением тепла.

Таким образом, реакция взрыва может быть основана также на распаде химического соединения на элементы, если этот распад идёт со значительным выделением тепла. Наконец, возможны и комбинированные случаи, когда наряду с распадом на элементы происходят и реакции окисления кислородом, содержащимся в молекуле того же соединения или в молекулах других составных частей взрывчатого вещества.

Технические способы изготовления того или иного взрывчатого вещества определяются в соответствии с его типом и составом. При изготовлении взрывчатых смесей — это тонкое измельчение твёрдых составных частей и последующее их тщательное смешение. При изготовлении взрывчатых химических соединений — это различные химические процессы, основным из которых является обработка азотной кислотой (обычно в смеси с серной) различных органических соединений (углеводородов, спиртов, углеводов и др.).