До сих пор я еще не показал на опыте, что мыльная пленка или пузырь в самом деле упруги, подобно куску растянутой резиновой перепонки.
Однако, прежде чем приступить к опытам, посмотрим сначала, с какого рода силами мы будем иметь дело. Если мы имеем чистую воду, то силы, действующие в противоположных направлениях на протяжении линии в один миллиметр, соответствуют весу в 7,7 миллиграмма. Величину эту очень легко определить измеряя высоту, на какую поднимается чистая вода в тонкой стеклянной трубочке.
Известно, что пузыри выдуваются из мыльного раствора, но не из чистой воды. Очень часто поэтому думают, что упругость и сила натяжения поверхностной пленки у мыльной воды должны быть больше чем у чистой. Однако, в действительности дело обстоит как раз наоборот, и в этом можно сразу убедиться, посмотрев, на какую высоту поднимается мыльный раствор в той же тонкой трубочке, в которой раньше поднималась вода. Оказывается, что мыльный раствор поднимается лишь на одну треть прежней высоты. Сила поверхностного натяжения у мыльного раствора немногим превосходит величину в 24 миллиграмма на один сантиметр, тогда как у воды она достигает вес личины в 7,7 миллиграмма на один миллиметр.
Мыльный пузырь образуется тонким слоем жидкости с двумя поверхностями, и каждая из них стремится сократиться с силой приблизительно в 24 миллиграмма на один сантиметр; поэтому мыльный пузырь стремится к сжатию с силой, несколько большей 48 миллиграммов на один сантиметр. Именно такова сила воздействия мыльной перепонки на предмет, к которому она прикреплена, что нетрудно показать различными способами. Самый простой, пожалуй, путь состоит в следующем. Привяжем совершенно свободно нитку поперек кольца и опустим кольцо в мыльную воду. Когда мы вынем кольцо из жидкости, окажется, что оно затянулось перепонкой, в которой наша нитка может двигаться совершенно свободно, как вы можете видеть на экране. Но стоит прорвать перепонку с одной стороны, как нить с другой стороны натянется перепонкой насколько возможно сильно и не будет висеть свободно, как прежде (рис. 18).
Рис. 18.
Вы замечаете также, что нить образует часть правильного круга, потому что именно благодаря такой форме линии на одной стороне площадь оказывается возможно большей, тогда как На другой стороне, где находится перепонка, возможно меньшей. А вот другой опыт. К другому кольцу привязывается нить, раздвоенная на небольшом протяжении посредине. Если прорвать пленку между нитями, они сразу растягиваются в стороны и образуют правильный круг (рис. 19), потому что это и есть форма, делающая площадь внутри наивозможно большей, площадь же вне его оказывается наивозможно меньшей.
Рис. 19.
Вы можете также и тут подметить, что хотя нельзя изменить форму крута, зато он может совершенно свободно двигаться внутри кольца, потому что при этом движении не создается никаких изменений в величине площади вне круга.
Теперь я произведу такой опыт. Я выдуваю пузырь и помещаю его на проволочном кольце. Затем я привешиваю к нему снизу маленькое кольцо и, чтобы лучше видеть, что случится, впускаю внутрь пузыря немного дыма. Я разрываю пленку внутри нижнего кольца, и вы видите, что дым выгоняется наружу, а подвешенное кольцо поднимается. И то и другое указывает на упругие свойства пленки. А вот еще один опыт. Я выдул пузырь на конце широкой трубки; если поднести открытий конец трубки к пламени свечи, то выходящий воздух сразу потушит пламя, что указывает на сходство мыльного пузыря с упругим растянутым мешком (рис 20).
Рис. 20.
В действительности при этом опыте тушению свечи в значительной мере способствует углекислый газ из наших легких. Но можно достичь того же результата при помощи чистого воздуха. Вы видите теперь, что вследствие упругости оболочки мыльного пузыря воздух или другой газ внутри него находится под давлением и при первой возможности стремится выйти наружу.
Поставим теперь вопрос: внутри какого пузыря воздух сдавливается сильнее — внутри большого или маленького? Попробуем решить этот вопрос путем опыта и попытаемся объяснить результат. Вот две трубки, каждая с краном. Они соединены между собою третьей трубкой, посреди которой тоже имеется кран. Сначала я выдуваю один пузырь и запираю его при помощи крана (рис. 21), а затем другой, который, в свою очередь, запирается краном.
Рис. 21.
Пузыри почти одинакового размера, но воздух не может переходить из одного в другой, потому что средний кран тоже заперт. Если давление внутри большого пузыря больше, то, когда я открою средний кран, воздух должен будет переходить из большого пузыря в малый, пока они не сравняются по величине; наоборот, если давление больше в маленьком пузыре, он будет вдувать воздух в большой, а сам будет уменьшаться, пока не исчезнет совершенно. Проверим эти соображения опытом. Вы видите сразу, что как только я открываю промежуточный кран, малый пузырь сжимается и вдувает воздух в большой, показывая, таким образом, что давление внутри маленького пузыря больше, чем внутри большого. Направления, в которых движется воздух и изменяются пузыри, указаны на рисунке стрелками. Мне хотелось бы обратить на этот опыт ваше особое внимание и просить запомнить его, потому что он является основой многого, о чем будет речь впоследствии. Чтобы запечатлеть его в вашей памяти, я хочу показать то же самое другим способом.
Вот здесь, перед фонарем, помещена трубка, изогнутая в виде дуги и наполовину наполненная водой. Левый конец этой трубки имеет продолжение, на котором можно выдуть пузырь (рис. 22).
Рис. 22.
Вы можете теперь видеть, как изменяется давление, когда размеры пузыря возрастают, так как вода в дугообразной трубочке перемещается сильнее при большом давлении и. слабее при малом. Вот теперь, когда на конце трубки находится очень маленький пузырь, давление, определяемое высотой столба воды на измерительной линейке, оказывается равным половине сантиметра. Когда пузырь увеличивается, мы видим, что давление падает, и вот, когда пузырь станет вдвое больше, давление окажется равным лишь половине прежней величины. Таким образом, оказывается верным, что чем меньше пузырь, тем больше давление. Так как перепонка всегда растянута с одной и той же силой, независимо от размеров пузыря, то ясно, что давление внутри пузыря может зависеть только от его кривизны. Когда речь идет об окружности, мы говорим, что чем она больше, тем меньше ее кривизна; отрезок маленькой окружности имеет, как мы говорим, большую кривизну, тогда как отрезок большой окружности той же длины имеет лишь малую кривизну; если бы мы взяли отрезок огромной окружности, то Не сумели бы отличить его от прямой линии и сказали бы, что у него нет кривизны вовсе. Совершенно так же обстоит дело с частью шаровой поверхности: чем больше шар, тем меньше его кривизна, и если бы шар имел величину нашей земли, т. е. около 13 000 километров в диаметре, мы не были бы в состоянии отличить небольшую часть поверхности такого шара от настоящей плоскости. Поверхность воды на земле представляет собой часть шаровой поверхности, хотя спокойная вода в небольшом озере или бассейне представляется совершенно плоской. Однако, можно убедиться, что в очень большом озере или море она оказывается искривленной. Мы видели, что в больших пузырях давление мало и кривизна мала, тогда как в маленьких пузырях давление велико и кривизна тоже большая. Давление и кривизна увеличиваются и уменьшаются одновременно. Теперь мы усвоили урок, данный нам опытом с двумя пузырями, из которых один был выдут при помощи другого.
Шар, или сфера, — не единственная форма, какую можно придать мыльному пузырю. Если поместить пузырь между двумя кольцами, его можно растягивать, пока он не примет вида круглой прямой трубки, так называемого цилиндра. Мы говорили о кривизне шара, или сферы; а какова будет кривизна цилиндра? Если смотреть сбоку на край деревянного цилиндра, поставленного на стол, то он будет представляться нам прямым, т. е. вовсе не имеющим кривизны; но если смотреть на цилиндр сверху, то конец его будет иметь вид круга; другими словами, он будет обладать определенной кривизной. Какова же в действительности кривизна поверхности цилиндра? Мы видели, что давление внутри пузыря зависит от его кривизны в том случае, когда пузырь имеет форму шара; но это верно для всяких пузырей, какой бы то ни было формы. Если нам удастся подобрать шар такого размера, чтобы воздух внутри него испытывал такое же давление, как и в цилиндрическом пузыре, тогда мы вправе будем сказать, что кривизна цилиндра равна кривизне уравновешивающего его шара.
Теперь на обоих концах короткой трубки я выдую по обыкновенному пузырю, притом нижнему пузырю придам при помощи другой трубки цилиндрическую форму, и буду вдуванием или выпусканием воздуха регулировать количество воздуха в нем, пока его стенки не станут совершенно прямыми. Вот теперь это удалось мне (рис. 23), и давление в обоих пузырях должно быть точно одинаковым, так как воздух может свободно переходить из одного в другой.
Рис. 23.
Мы видим, что поперечник шара ровно в два раза больше поперечника цилиндра. Но этот шар обладает лишь половиной кривизны, которой обладал бы шар с половинным диаметром. Отсюда мы видим, что кривизна цилиндра, равная, как мы знаем, кривизне большого шара (так как они. взаимно уравновешивают друг друга), составляет только половину кривизны шара равного диаметра, а потому давление внутри цилиндра равно только половине давления внутри шара с диаметром, равным диаметру цилиндра.
Теперь мне необходимо сделать еще шаг для разъяснения этого вопроса о кривизне. В тот момент, когда цилиндр и шар уравновешивают друг друга, я стану вдувать воздух так, чтобы шар увеличился. Что произойдет с цилиндром? Цилиндр наш, как видите, очень короткий; раздуется он тоже или случится что-нибудь другое? Вот я вдуваю воздух, и вы видите, что шар увеличился, причем давление внутри него уменьшилось; у цилиндра же появился перехват, это уже не цилиндр: его стенки вогнулись внутрь. По мере того как я вдуваю воздух и увеличиваю шар, они вгибаются все больше внутрь, но не беспредельно. Если бы я мог раздуть верхний пузырь до огромных размеров, давление внутри него стало бы ничтожно малым. Попробуем теперь совершенно и сразу уничтожить давление, просто заставив верхний пузырь лопнуть и давая таким образом свободный выход воздуху изнутри наружу. Повторим этот опыт в крупных размерах. Я беру два больших стеклянных кольца, между которыми образуется подобная же пленка, имеющая совершенно такую же форму с вогнутыми внутрь стенками (рис. 24).
Рис. 24.
Но так как внутри нет вовсе давления, то тут не должно быть и никакой кривизны, если то, что я сказал выше, правильно. Присмотримся, однако, к мыльной пленке. Кто же решится утверждать, что она не имеет кривизны? А между тем мы твердо установили, что давление и кривизна неизменно связаны друг с другом. По-видимому, мы пришли теперь к нелепому заключению. Так как давление сведено к нулю, то, как мы знаем, у поверхности не должно быть кривизны, а между тем достаточно беглого взгляда, чтобы заметить, что наша поверхность обладает кривизной, придающей ей вид элегантной фигуры с талией. Чтобы разобраться в этом, рассмотрим гипсовую модель геометрического тела, обладающего таким же перехватом.
Присмотримся к этому телу внимательнее. Я беру картонный кружок точно такого же диаметра, как и перехват нашей модели. Затем я прикладываю его ребром к перехвату (рис. 25), и вы видите, что, хотя кружок и не заполняет всей кривизны, он плотно соприкасается с частью, прилегающей к перехвату.
Рис. 25.
Далее мы обратим внимание на то, что эта часть модели при рассматривании сбоку кажется вогнутой внутрь, но она же показалась бы нам выгнутой наружу, если бы мы могли посмотреть на эту часть модели сверху. Итак, если рассматривать отдельно перехват, мы видим, что он одновременно и в одинаковой степени вогнут внутрь и выгнут наружу, в зависимости от точки зрения, с какой мы его рассматриваем. Кривизна, направленная внутрь, должна уменьшать давление внутри, кривизна же, направленная наружу, должна увеличивать его, а так как они равны, то как раз уравновешивают одна другую, и тут совсем не будет никакого давления. Если бы мы могли таким же путем исследовать пузырь с перехватом, мы убедились бы, что это справедливо не только по отношению к перехвату, но и по отношению к каждой части пузыря. Когда мы имеем дело с какой-нибудь изогнутой поверхностью, то для определения ее кривизны в какой-либо точке надо измерить кривизны вдоль двух взаимно перпендикулярных линий. Всякая кривая поверхность, подобная нашей, у которой в каждой точке эти две кривизны противоположно направлены и равны, называется поверхностью без кривизны. Таким образом, то, что казалось нелепостью, теперь разъяснилось. Наша поверхность, единственная, за исключением плоскости, поверхность без кривизны, симметричная по отношению к оси, называется катеноидом, потому что линии ее похожи, как вы непосредственно видите, на цепь, укрепленную в двух точках, a «catena» по-латыни и значит «цепь». Я привешиваю цепь к двум крючкам на горизонтальной палке и освещаю ее сильным светом так, что ее вам теперь хорошо видно (рис. 26).
Рис. 26.
Это та же самая форма, что и у боковой поверхности мыльного пузыря, образованного между двумя кольцами и открытого на концах доступу воздуха.
Может случиться, что кривизны, измеренные вдоль двух взаимно перпендикулярных линий, не равны и противоположны, как у только что рассмотренного катеноида; тогда, если поверхность имеет натяжение, подобное поверхностному натяжению воды, давление окажется бóльшим на более вогнутой стороне, причем оно прямо пропорционально разности между двумя кривизнами. Эти соображения дают нам ключ к решению проблемы о точной форме капли воды (рис. 2) или спирта. Давление внутри определенного количества жидкости возрастает постепенно сверху вниз, подобно тому как в море давление возрастает по мере опускания вглубь. Форма капли такова, что на каком-нибудь уровне полная кривизна, определенная, как было указано выше, т. е. сумма или разность кривизн, измеренных в двух взаимно перпендикулярных направлениях (сумма, если их центры лежат по одну сторону поверхности, или разность, если по обеим сторонам), пропорциональна расстоянию от уровня воды или спирта. Вода — более тяжелая жидкость, а потому капли ее должны были бы быть сами по себе меньше, но, с другой стороны, ее поверхностное натяжение превосходит поверхностное натяжение спирта, так что в результате капли воды оказываются крупнее капель спирта.
Мы нашли, что давление внутри короткого цилиндра уменьшается, если у него начинает образовываться перехват, и, наоборот, увеличивается, когда стенки цилиндра выпячиваются. Попробуем теперь уравновесить два пузыря: один с перехватом, а другой с раздутыми стенками. Как только я открываю кран и даю возможность воздуху переходить из одного пузыря в другой, раздутый пузырь перегоняет воздух в пузырь с перехватом и оба они становятся прямыми. На рис. 27 направление движения воздуха, а также стенок пузырей, обозначено стрелками.
Рис. 27.
Произведем теперь тот же самый опыт с двумя гораздо более длинными цилиндрами, у которых длина, примерно, в два или три раза больше диаметра. Вот они и готовы: один с раздутыми стенками, а другой с перехватом посредине. Я открываю кран и даю воздуху возможность переходить из одного в другой. Что же оказывается? Пузырь с перехватом сжимается и раздувает другой еще сильнее (рис. 28), пока, наконец, сам не разделится пополам.
Рис. 28.
Таким образом, он ведет себя прямо противоположно тому, как действовал короткий цилиндр. Если вы станете испытывать несколько цилиндров различной длины, вы убедитесь, что перемена эта происходит как раз у тех цилиндров, у которых длина ровно в полтора раза больше диаметра. Если теперь вы вообразите, что один из этих цилиндров соединяется концом с другим, вы увидите, что цилиндр, у которого длина в три раза превосходит диаметр, может существовать лишь мгновенье; причина в том, что, как только один конец чуть-чуть сожмется, давление здесь возрастает и узкий конец начинает вдувать воздух в широкий конец (рис. 29), пока стенки узкого конца не соприкоснутся.
Рис. 29.
Точная длина самого длинного устойчивого цилиндра немногим больше трех его диаметров. Цилиндр становится неустойчивым как раз в тот момент, когда длина его становится равной окружности, а это почти в точности соответствует величине в 3 1/7 его диаметра.
Я постепенно раздвигаю эти кольца, поддерживая приток воздуха, и вы видите, что, как только длина трубки становится приблизительно в три раза больше ее диаметра, оказывается очень трудным поддерживать ее, и вот вдруг образуется перехват ближе к одному концу и трубка разрывается, образуя два отдельных неравных пузыря.
Мыльный пузырь обладает натяжением и всегда принимает такую форму, чтобы его поверхность стала возможно меньшей, поскольку это допускается условиями, а именно — содержащимся в нем воздухом и формой твердой опоры, которая поддерживает пузырь. Очевидно, что это дает нам возможность установить, увеличивает или уменьшает данное изменение формы общую поверхность. Остановимся, например, на только что рассмотренном цилиндре, опирающемся на два кольца и содержащем достаточно воздуха; если длина его меньше 3 1/7 диаметра, тогда сужение одного конца и расширение другого увеличивают общую поверхность. Это мы знаем потому, что мыльный пузырь такой формы может существовать. Пузырь длиной больше 3 1/7 диаметра не может существовать. Следовательно, движение, ведущее к образованию на одном конце перехвата и раздутия на другом, как бы мало оно ни было, ведет к уменьшению поверхности; пузырь уже не возвратится к прежнему положению, но это уменьшение поверхности будет идти все дальше, пока пузырь не разорвется, как мы уже видели. Как раз при критической длине в 3 1/7 диаметра небольшому такому движению соответствует крайне малое изменение поверхности. Пузырь или сопротивляется с очень небольшой силой, или способствует этому движению. Такие пузыри называются очень малоустойчивыми или просто неустойчивыми. Подобный пузырь может быть использован для изучения таких малых сил, действующих на находящийся внутри него газ, каких мы не подметили бы у пузыря более стойкой формы, например у обыкновенного шарообразного мыльного пузыря. Вот тут я выдуваю сферический пузырь с помощью чистого кислорода и помещаю этот пузырь между двумя полюсами электромагнита, т. е. куска мягкого железа, который превращается в магнит только при пропускании по обвивающей его изолированной проволоке электрического тока (рис. 30).
Рис. 30.
Пузырь и магнит можно видеть на экране, и вы слышите стук выключателя, замыкающего ток. Внутри пузыря должно происходить какое-то движение, потому что кислород слабо магнитен, однако, я сомневаюсь, чтобы кому-нибудь удалось подметить это движение. А теперь, пользуясь подставкой с двумя передвигающимися кольцами, я выдуваю другой пузырь, наполненный тем же самым газом, и вытягиваю его в цилиндр с длиной, очень близкой к критической (рис. 31).
Рис. 31.
В тот момент, когда вы слышите стук выключателя, магнит действует на газ, придает ему силу преодолеть слабое сопротивление почти неустойчивого пузыря, и в мгновение, слишком короткое, чтобы процесс можно было проследить глазом, наш пузырь разрывается на два (рис. 32).
Рис. 32.