Мы хорошо знакомы с мыльными пузырями с самого раннего детства, и потому-то возможность их существования кажется нам чем-то само собой разумеющимся. Поэтому большинству из нас не приходит в голову задуматься над вопросом, почему возможно выдуть мыльный пузырь. А между тем уяснить себе возможность существования таких предметов гораздо труднее, чем понять все те явления, которые я показывал вам и которые относятся к их свойствам и форме. Когда кто-нибудь уяснил себе, что поверхность жидкости обладает натяжением, что она ведет себя подобно растянутой упругой перепонке, тогда объяснить существование мыльного пузыря кажется делом очень легким. Представляется естественным, что мыльный пузырь можно выдуть из мыльного раствора потому, что «перепонка» этого раствора очень прочна. В действительности же это совсем неверно. Чистая вода, из которой нельзя выдуть пузырь в воздухе и которая не образует даже пены, обладает «перепонкой», или поверхностным натяжением, в три раза большим, чем мыльный раствор, что подтверждается обычными способами, например, наблюдением поднятия жидкостей в капиллярных трубках. Даже в присутствии ничтожного количества мыла поверхностное натяжение воды падает с величины 7,7 миллиграмма на линейный миллиметр до 3 миллиграммов, как вычислил Плато из опытов над пузырями. Жидкость эта поднимается в капиллярной трубке лишь немного больше, чем на одну треть высоты поднятия воды. Мыльная пленка обладает двумя поверхностями, с натяжением каждая в три миллиграмма на один миллиметр, следовательно, растягивается с силой около шести миллиграммов на один миллиметр. Многие жидкости образуют пену, но не годятся для выдувания пузырей. Рэлей показал, что чистая жидкость не дает пены, тогда как смесь двух чистых жидкостей, например спирта и воды, образует пену. От чего бы ни зависело свойство жидкости давать пену, оно должно быть хорошо развито, чтобы из нее можно было выдувать пузыри. Я не раз говорил о натяжении мыльной пленки, как о величине постоянной, и это почти верно. Однако, профессор Виллард Гиббс показал, что это натяжение не может быть повсюду совершенно одинаковым. Рассмотрим, например, какой-нибудь большой пузырь или для удобства плоскую вертикальную пленку, натянутую на проволочном кольце. Если бы натяжение 6 миллиграммов на один миллиметр действительно было совершенно неизменным во всех частях, тогда средние части пленки, растягиваемые вверх и вниз верхней и нижней частями пленки, в результате не удерживались бы ими вовсе и подобно другим лишенным опоры телам должны были бы падать с ускорением, сообщаемым силой тяжести, как падает выпущенный из рук камень. Однако, ничего подобного нельзя заметить у средней части такой пленки. Она, по-видимому, остается в покое, и если здесь и есть какое-либо движение вниз, то слишком незначительное, чтобы его можно было подметить. Поэтому верхняя часть пленки должна быть натянута сильнее, чем нижняя часть, причем разность должна быть равна весу промежуточной части. Мы переворачиваем кольцо верхней частью вниз, и все же средняя часть пленки не падает. Пузырь поэтому обладает замечательным свойством приспособлять в тесных пределах свое натяжение к нагрузке. Виллард Гиббс считает, что это свойство пленки зависит от того, что вещество на ее поверхности не тождественно с веществом ее толщи. По его мнению, поверхность обогащена веществом, которое уменьшает ее поверхностное натяжение; это вещество при растягивании пленки становится на ее поверхности менее концентрированным, делая пленку более крепкой, а при сокращении концентрируется в пленке, делая ее более слабой. Его собственные слова настолько удачно и ясно излагают дело, что я предпочитаю просто процитировать из его «Термодинамики» относящееся сюда место: «В толстой пленке (в противоположность тонкой пленке) усиление поверхностного натяжения при растягивании, необходимое для поддержания ее устойчивости. связано с избытком мыла (или какого-либо из его компонентов) на поверхности по сравнению с внутренней областью пленки».
Это аналогично действию масла на воду, описанному на стр. 29. Красивый опыт подтвердил теорию «обогащения». Измерив поверхностное натяжение мыльного раствора в течение первой сотой доли секунды его существования, мы найдем, что поверхностное натяжение v него то же самое, что и у воды, так как «обогащение» поверхности не успело еще произойти. В этом опыте жидкость выходит из маленького эллиптического отверстия в тонкой пластинке, закрывающей конец трубки, соединенной с резервуаром, содержащим раствор. Когда жидкость выходит из такого отверстия, как показано на рис. 65, поперечный разрез через струю имеет эллиптическую форму, изображенную внизу. Под влиянием поверхностного натяжения эллипс стремится превратиться в круг, но в момент превращения сечения в круг раз начавшееся движение не может остановиться сразу, и жидкость продолжает движение, пока сечение струи не станет эллиптическим в другом направлении, как показано на рис. 65, b.
Рис. 65.
Этот процесс продолжается с определенной скоростью, зависящей от силы поверхностного натяжения, плотности жидкости и толщины струи. Скорость жидкости зависит в то же время от глубины отверстия под свободной поверхностью, и если условия хорошо подобраны, во время переноса жидкости от а до с эллипс успевает завершить свою полную эволюцию, и это повторяется несколько раз. Если поверхностное натяжение станет меньше, эволюция эта будет совершаться медленнее, и расстояние между узлами а — с — е — g будет больше. При одной и той же высоте уровня жидкости расстояние между узлами как для чистой воды, так и для мыльного раствора сначала то же самое; это показывает, что их поверхностные натяжения вначале одинаковы.
Если же берется спирт, обладающий собственным поверхностным натяжением с самого начала, промежутки между узлами становятся больше, так как поверхностное натяжение относительно уменьшено в большей степени, чем плотность. Происходит то самое поверхностное сгущение, о котором говорил Гиббс.
Следующий опыт также указывает на существование поверхностного сгущения. Выдуем пузырь на горизонтальном кольце с диаметром, немного лишь большим диаметра кольца, и поднесем к верхней части пузыря пробку, смоченную раствором аммиака. Пузырь сейчас же станет отходить от пробки и перебираться на другую сторону кольца, как будто ему неприятен запах аммиака. Если затем поднести пробку к нижней части пузыря, он станет перебираться наверх. Что же происходит здесь в действительности? Аммиак вступает в соединение с некоторыми из составных частей мыла, сгущающимися на поверхности, и таким образом увеличивает натяжение пленки по одну сторону кольца; поэтому эта часть пленки сокращается и гонит пленку на другую сторону, где она не подвергается действию аммиака. Часть пленки, подвергшаяся действию аммиака, становится, кроме того, толще, остальная же тоньше, что видно по цветам, которые в последнем случае бывают более красивы и пестры.
Возвращаясь теперь к мыльной пленке, мы видим, что, какова бы ни была ее форма, верхние части ее натянуты несколько больше, чем нижние, и в случае вертикальной пленки разность равна величине, необходимой для поддержания веса промежуточной пленки. Однако, существует предел, за которым процесс этот уже не будет совершаться, — другими словами, существует предел величины мыльного пузыря. Мне неизвестно, каков этот предел. Я выдувал шарообразные пузыри до шестидесяти восьми сантиметров в диаметре, а другие, без сомнения, выдували пузыри еще больших размеров. Я брал также тонкий шнур в 3 метра длиной, связывал его концы и смачивал петлю в мыльном растворе, не давая ей закручиваться. Держа по пальцу каждой руки в петле, я погружал ее в мыльный раствор, затем вынимал и растягивал, образуя таким способом мыльную пленку в полтора метра длиной. Когда я держал петлю вертикально, пленка не разрывалась, показывая, что полтора метра меньше предельной величины мыльного пузыря даже умеренной толщины. Для тонкого пузыря этот предел отодвигается значительно дальше.