Когда в комнате зажигают лампу, свет её освещает всю комнату. Значит, свет распространяется от лампы во все стороны. Хорошо известно также, что лучи света распространяются прямолинейно. Когда лучи солнца пробиваются мощными потоками сквозь просветы в облаках или узкой полосой проникают сквозь щель в ставне, можно наблюдать, как строго прямолинейно они идут.
Но всегда ли лучи света распространяются прямолинейно? Нет, не всегда. Свет распространяется прямолинейно только в однородной прозрачной среде, например, в воздухе, и только тогда, когда на его пути нет никаких препятствий.
Если же на пути света встречаются непрозрачные предметы, лучи изменяют свой путь, они отражаются от поверхности предмета и идут прямолинейно по новому направлению. При каждой встрече лучей с поверхностью того или иного тела свет частично поглощается веществом тела. Поэтому отражённые лучи света всегда слабее падающих. В зависимости от степени поглощения и отражения света окружающими нас предметами последние кажутся нам более или менее яркими. Лучше всего отражают свет полированные, зеркальные поверхности. Хорошо отражают свет белые поверхности. Хуже всего отражают свет чёрные матовые поверхности. Так, например, только что выпавший снег отражает 80 процентов падающего на него света, а чёрный бархат всего лишь 0,4 процента.
Когда параллельные лучи света падают на хорошо отполированную плоскую поверхность (например, зеркало), то все они отражаются в одну и ту же сторону и продолжают итти в одном и том же новом направлении (рис. 13).
Рис. 13. Правильное, зеркальное отражение света.
Такое отражение называется правильным, или зеркальным отражением. Но зеркальногладкие поверхности в природе встречаются очень редко. У подавляющего большинства окружающих нас предметов поверхность шероховатая. Даже хорошо отполированная блестящая металлическая пластинка оказывается совсем не гладкой, если посмотреть на неё в микроскоп.
Падая на шероховатую поверхность, лучи света отражаются от неё во всех направлениях.
Взгляните на рисунок 14.
Рис. 14. Рассеянное отражение света.
Слева показан участок хорошо отполированной поверхности в сильно увеличенном виде. В действительности этот участок поверхности не больше самой маленькой точки, которую способен видеть наш глаз. На эту поверхность падает тончайший пучок параллельных лучей света, который показан тоже в сильно увеличенном виде.
Встретившись с разными точками поверхности под разными углами, лучи света отражаются от этих точек также под разными углами, и, отразившись, расходятся в разные стороны, или, как говорят, рассеиваются.
Именно такое отражение и происходит почти всегда в природе. Называется оно неправильным или рассеянным отражением.
Попытаемся теперь уменьшить наш рисунок до его истинных размеров, то-есть изобразить его в натуральную величину. Сделать это, конечно, не легко, так как в этом случае придётся изобразить всё так мелко, что мы едва сможем разобрать рисунок; поэтому изобразим его так мелко, как возможно (рис. 14 справа). Теперь пучок лучей света превратился на нашем рисунке в тонкую линию, и падает он в одну точку поверхности, но отражённые этой точкой лучи расходятся в разные стороны. Именно так и происходит обычно отражение света в природе: лучи света, падая на поверхность любой точки предмета, отражаются от этой точки во все стороны.
Это явление играет весьма важную роль в нашей повседневной жизни. Оно позволяет видеть предметы не с одной какой-либо стороны, а с любой, так как где бы мы ни находились, всегда какая-то часть отражённых предметом лучей (если только они не заслоняются другими предметами) достигнет нашего глаза, а это условие является необходимым для зрительного восприятия предметов. Благодаря этому же явлению рассеянного отражения мы можем фотографировать предмет с любой стороны.
А что происходит с лучами света, когда они встречают на своём пути какое-либо прозрачное, то-есть пропускающее свет, тело, например стекло или воду? И в этом случае часть лучей света отражается от поверхности тела. Но большая часть лучей проникает внутрь тела. Однако прямолинейный ход лучей света при этом нарушается. Лучи света как бы изламываются в точке соприкосновения с поверхностью тела и меняют направление. Такое явление называется преломлением света.
Взгляните на ложечку, опущенную в стакан с водой: ложечка покажется вам изломанной у поверхности воды (рис. 15).
Рис. 15. Ложечка, опущенная в стакан с водой, кажется изломанной.
Это следствие преломления света. Лучи, отражённые той частью ложечки, которая находится над водой, достигают нашего глаза, пройдя только через слой воздуха. А лучи, идущие от поверхности ложечки, погружённой в воду, прежде чем попасть в наш глаз, пройдут сначала через слой воды, затем через стекло и, наконец, через слой воздуха. При этом они три раза изменяют своё направление, отчего ложечка и кажется изломанной. На рисунке 16 показано, какой примерно путь совершит луч света, пройдя через три разные прозрачные среды: воздух, воду и стекло.
Рис. 16. Так преломляется луч света при прохождении через воздух, воду и стекло.
Установлено, что различные прозрачные среды преломляют лучи света неодинаково.
Стекло, например, преломляет свет сильнее, чем вода, алмаз — сильнее, чем стекло.
В свою очередь различные по своему составу стёкла также по-разному преломляют лучи света.
Кроме того, лучи света преломляются тем сильнее, чем больше угол, под которым они падают на преломляющую поверхность. Не преломляются и не меняют своего прямолинейного направления только те лучи, которые падают на преломляющую поверхность под прямым углом.
Таковы основные свойства света. Зная эти свойства, нам нетрудно понять, как в фотоаппарате возникает световое изображение предметов.