XIII (p. 154)

Ad quæstionem XVII Libri IV.

Invenire tres numeros æquales quadrato, ita ut quadratus cujuslibet ipsorum adscito sequente numero faciat quadratum.

Elegantius fortassè ita solvetur hæc quæstio, ponatur primus numerus 1.N. secundus 2N + 1 ut cum quadrato primi conficiat quadratum, ponatur tertius quilibet unitatum et numerorum numerus, eâ conditione ut additus quadrato secundi conficiat quadratum, V. G. [verbi gratia] sit 4.N. + 3. ita igitur duabus propositi partibus fit satis, superest ut summa trium, sed et quadratus tertij unâ cum primo conficiat quadratum, summa trium est 4 + 7N. summa verò quadrati tertij et primi est. 9 + 25N + 16Q. oriturque duplicata æqualitas cuius solutio in promptu si unitates quadratas ad eumdem numerum quadratum in utrovis numero quadrato adæquando revoces.

Eademque viâ facillimè extendetur quæstio ad 4. numneros et infinitos cavendum enim solummodo erit ut summa unitatum quæ in singulis numeris ponuntur conficiat quadratum quod quider facillimum est.

Перевод:

Эта задача допускает, пожалуй, более изящное решение. Положим первое число x, второе 2 x + 1, так что, прибавленное к квадрату первого, оно дает квадрат. Для третьего выберем произвольно коэффициент при x и свободный член, с условием, чтобы прибавление квадрата второго давало квадрат; например, пусть оно будет 4 x + 3.

Таким образом, два условия удовлетворены; нужно еще, чтобы сумма всех трех, а также квадрат третьего вместе с первым составляли квадраты.

Но сумма трех есть 4 + 7 x сумма же квадрата третьего и первого 9 + 25 x + 16 x 2.

Получаем двойное равенство, в котором свободные члены являются квадратами; поэтому решить его легко, сделав эти члены равными одному и тому же квадрату.

Тем же методом можно распространить задачу на четыре числа и так до бесконечности; достаточно сделать, чтобы свободные члены в выражениях для отдельных чисел были квадратами, а это очень легко.