18 апреля 1889 года прибор, предназначенный для наблюдения приливов в земной коре, воспринял какие-то отрывистые и непонятные сигналы. Таинственная сигнализация длилась более полутора часов. Научные сотрудники, обслуживавшие прибор, недоумевали.
Загадка вскоре разъяснилась. Телеграф принес известие о сильном землетрясении, которое произошло в Японии. Колебания земной коры, возникшие в Тихом океане, достигли Европы, преодолев более 9000 километров, и тут их воспринял чувствительный прибор.
Академик Б. Б. Голицын оценил громадное значение этого случайного наблюдения. Он сконструировал прибор, предназначенный для записи колебаний, вызванных землетрясением. Прибор Голицына получил название сейсмограф — «записывающий толчки».
С помощью своих сейсмографов Голицын изучал, как распространяются колебания, вызванные землетрясением. Оказалось, что сейсмограф, расположенный в районе подземной катастрофы, записывает толчков меньше, чем сейсмографы, установленные в нескольких тысячах километров от очага землетрясения. Если ближний воспримет один толчок, то дальние отметят два, три и даже четыре толчка.
Два типа сейсмографов и образцы сейсмограмм. На нижней кривой — запись землетрясения 16 ноября 1927 года, происшедшего в группе Алеутских островов.
Исследования Голицына показали — эти дополнительные «добавочные» и более слабые толчки — не что иное, как «подземное эхо» — отражение колебаний от глубинных слоев Земли.
В конце ноября 1906 года в подвале Пулковской обсерватории устроили сейсмическую станцию. В течение первых же сорока дней наблюдений было зарегистрировано 14 землетрясений. При этом выяснилось огромное превосходство сейсмографов Голицына над всеми другими приборами этого типа, которые были построены в других странах. В настоящее время все сейсмические станции мира снабжаются усовершенствованными сейсмографами Голицына.
Уже в 1906 году было установлено, что отраженные колебания — эхо далеких землетрясений — приходят с глубины в 106 и в 492 километра. Очевидно на этих глубинах расположены границы слоев, где плотность горных пород резко меняется.
Следовательно, Земля имеет слоистое строение, и плотность Земли возрастает с глубиной не равномерно, а ступенями — скачками, от слоя к слою.
Земной шар имеет внутри сложное, слоистое строение.
Сейсмограф позволяет вскрывать внутреннее строение земного шара, находить границы слоев, определять плотность пород в недосягаемой глубине.
«Землетрясение подобно лучу света, ярко вспыхивающему на мгновение, чтобы осветить недоступные нам глубины земного шара», — писал академик Голицын.
Чтобы не ждать, когда землетрясение поможет заглянуть вглубь, ученые стали делать искусственные землетрясения — взрывать крупные заряды динамита или аммонала и с помощью сейсмографов, заранее расставленных на разных расстояниях от места взрыва, улавливать подземное эхо.
Таким путем было установлено, что в Земле можно различить четыре основных слоя: первый слой — это земная кора, очень сложного и тоже слоистого строения, толщиной, примерно, в 492 километра. Плотность горных пород, составляющих наружную оболочку Земли, равна 2,6.
Второй слой — промежуточный — простирается на глубину до 1200 километров. Его плотность постепенно возрастает до 5. Третий слой — оболочка ядра — имеет в толщину 1700 километров, и его плотность, равная 5, почти не изменяется вплоть до ядра.
Ядро нашей планеты имеет форму шара радиусом в 3478 километров, или, иначе говоря, граница ядра лежит на глубине в 2900 километров от поверхности Земли. Именно на этом расстоянии плотность резко, скачком возрастает с 5 до 9,6. И многие признаки говорят, что вещество в ядре твердое, но оно находится не в кристаллическом, а в стекловидном состоянии. Вещества же, подобные стеклу или смоле, то есть твердые, но не кристаллические, называются в науке твердыми жидкостями.
Колебания, порожденные землетрясением, проходя сквозь ядро земного шара, отклоняются от своего пути и тем самым указывают размеры этого ядра.
Одновременно с исследованиями сейсмологов ученые вулканологи установили, что очаги расплавленной магмы, над которыми образуются огнедышащие горы, расположены на сравнительно небольшой глубине в 30–60 километров. И они действительно представляют собой отдельные очаги, то есть нечто вроде котлов с лавой, не связанных друг с другом. Случается, что вулканы, расположенные вплотную друг к другу, действуют совершенно независимо один от другого.
Видимо, вулканические извержения — явления местные, происходящие в верхнем слое земной коры. В центре Земли никакой расплавленной магмы нет.
Кроме геофизиков, исследованиями недоступных глубин земного шара занимались и астрономы.
Они наблюдали ежегодные перемещения северного полюса по поверхности Земли.
Полюс не остается всегда в одной точке, он движется, описывая вокруг среднего своего положения небольшие неправильной формы петли.
Это движение полюсов еще в XVIII веке предвидел петербургский академик и величайший математик своего времени Леонард Эйлер. Он указал, что имей Земля твердость большую, чем у алмаза, полюса на ней должны были бы перемещаться с периодом в 304 суток. Если же период передвижения полюса окажется больше 304 суток, то твердость Земли будет соответственно меньше.
Движение полюса по земной поверхности за 6 лет — с 1912 года по 1918 год.
Для стального шара, величиной с нашу планету, период перемещения полюсов должен составить, примерно, 450 суток.
В те годы замечательное предвидение Эйлера проверить не было возможности: астрономические приборы еще не достигли нужного совершенства. Только в начале XX века выяснилось, что полюс завершает каждую свою петлю в течение 433 суток. Следовательно, Земля по твердости уступает алмазу, но превышает сталь!
В 1913 году ученые нашли третье доказательство необычайной твердости Земли. Была измерена высота приливной волны, подымающейся в твердой земной коре.
Если бы Земля была внутри жидкой, то высота приливной волны на суше достигала 75 сантиметров. А этого нет. Приливная волна на суше не превышает 25 сантиметров. Земля, следовательно, тверда и, как показывают расчеты, сделанные после измерения высоты «сухопутных» приливов, твердость Земли превышает твердость стали.
Гипотезу об огненно-жидком ядре Земли беспощадной критике подверг замечательный русский астроном Ф. А. Бредихин. Он указал, что исследования геофизиков и астрономов приводят к одному результату — Земля внутри тверда.
В последние годы было замечено, что некоторые землетрясения происходят на очень большой глубине, — примерно в восьмистах километрах ниже уровня моря. Это также доказывает, что в глубине Земля тверда — ведь в пластичной, текучей массе никакие напряжения и сотрясения возникать не могут.
Основываясь на всех этих фактах, академик В. И. Вернадский писал: «Все представления о некогда существовавшем огненно-жидком или расплавленном состоянии планеты, бывшем или ныне существующем, внесены в науку в связи с чуждым ей по существу теологическим,[15] философским и космогоническим представлениями о мире, не поддерживаемыми известными сейчас научными фактами».
Гипотеза огненно-жидкого состояния земных недр была оставлена.
Таким образом, одна половина загадки земных недр разрешилась, а вторая осталась. Какова же температура в глубине? Высокой она быть не может, потому что Земля тверда, как сталь. И низкой она не может быть, так как уже на глубине в 30–60 километров располагаются большие лавовые очаги, питающие вулканы. Температура лавы составляет 1100–1150°, а иногда даже 1400°.
Чтобы объяснить это противоречие, оставалось предположить единственное: самый жаркий пояс в глубине Земли лежит недалеко от поверхности.
Температура возрастает только до определенной глубины. Затем начинается зона более или менее равномерной температуры, и эта зона простирается вплоть до центра Земли.
Повидимому это так и есть, но почему — никто объяснить не мог.