ДАВЛЕНИЕ ВОЗДУХА
СКОЛЬКО ВЕСИТ ВОЗДУХ?
За нормальное давление условно принимается давление воздуха на уровне моря и при температуре 0°. Тогда оно уравновешивается столбом ртути в барометрической трубке высотой в 760 мм. Может быть, кто-нибудь спросит: "Причем тут температура?" Надо вспомнить, что все тела от теплоты расширяются; стало быть, расширяется и ртуть в трубке; значит, при одном и том же давлении атмосферы столбик ртути будет выше, чем при 0°, если температура выше 0°, и ниже, чем при 0°,— если температура ниже 0°. Строго говоря, так как вес всякого тела зависит от его расстояния до центра Земли, Земля же, как известно, не шар, а сплюснута у полюсов, то нужно еще присоединить и поправку на широту места; но она очень незначительна и необходима лишь для самых точных измерений.
Сколько же, однако, весит столб воздуха, давление которого уравновешивается столбом ртути в 760 мм длиной? Это, конечно, зависит от площади основания столба. Положим, что нас интересует давление на площадку в квадратный метр. Если бы мы имели не ртуть, а воду, столб ее в барометрической трубке был бы не 760 мм, а в 13 1 / 2 раз больше, т. е. примерно 10 1 / 2 м, и объем такого столба при основании 1 кв. м был бы 10 1 / 2 куб. м; вес его был бы 10 1 / 2 т, т. е. 10 500 кг, или более 650 пудов.
Наш организм вполне приспособлен только к тем давлениям, которые нам постоянно приходится переносить. Резкие повышения или понижения давления обычно сказываются на человеке, особенно если он не вполне здоров. Подъемы в высокие, разреженные слои воздуха при полетах на шарах или аэропланах или восхождениях на горы сказываются и у здоровых людей различными болезненными явлениями. Отчасти здесь играет роль недостаток кислорода, но в значительной степени — и самое понижение давления.
Привычка, играющая такую большую роль в жизни человека, проявляется однако и в этой области. Во время длительных экспедиций на высокие горы, когда людям приходилось сравнительно долго оставаться на больших высотах, они вначале чувствовали себя очень скверно: страдали заметной слабостью, не могли спать и т. п. Но с течением времени наступало приспособление к разреженному воздуху, и уже через 4–5 дней путешественники чувствовали себя довольно сносно. Последняя экспедиция на Эверест летом 1924 года, когда была достигнута наивысшая точка около 8 580 м (высота Эвереста около 8 845 м), показала, что и на этих грандиозных высотах можно существовать и даже совершать переходы без искусственного дыхания кислородом, при условии предварительной тренировки. А ведь давление там — примерно 260 мм, почти втрое меньше нормального! Значительно ниже этих головокружительных высот, но все же на весьма почтенной высоте около 5200 м (всего на 400 м ниже вершины нашего Эльбруса), там же на Эвересте постоянно живет отшельник-индус и, по-видимому, чувствует себя хорошо, хотя давление не превышает 400 мм.
Если же каким-нибудь образом выкачать внутренний воздух из полых предметов, внешнее давление, сразу проявит себя. В учебниках физики описывается знаменитый опыт с "Магдебургскими полушариями", которые, когда из них выкачали воздух, так плотно прижались друг к другу под действием атмосферного давления, что их не могли разнять 16 лошадей. А вот любопытный пример из другой области. На побережьи океана в С. Америке часто проносятся бури колоссальной силы, так называемые "торнадо". Давление при этих бурях падает иногда в короткий срок до 700 мм и даже ниже. Оказывается, что давление внутри зданий при таких резких падениях, наружного давления не успевает следовать за последним; разности давления могут получиться настолько большие, что дом как бы взрывается изнутри!
Рис. 1. Ниагарский водопад, замерзший во время сильных морозов в феврале 1926 г.
Рис. 3. Наружный вид дома Галилея во Флоренции.
ГДЕ ГРАНИЦА АТМОСФЕРЫ?
По мере поднятия над Землей давление и плотность воздуха уменьшаются; при этом давление убывает не пропорционально высоте, а гораздо быстрее. Если бы вся атмосфера имела температуру 0°, то у земли было бы давление 760 мм, на высоте 18,4 км — 76 мм, на высоте 36,8 км — 7,6 мм, на высоте 55,2 км — 0,76 мм и т. д. Так как в верхних слоях температура ниже 0°, то в действительности давление убывает еще быстрее, и на 40 км составляет уже около 1 мм, а на высоте 500 км — около 0,001 мм. Это величины уже исчезающие малые, и практически атмосфера для нас не существует выше 10–15 км. Определенную границу между такими "следами" воздуха и безвоздушным пространством провести вряд ли можно: переход совершается постепенно уловить его нельзя. Можно решить другую задачу: как высоко простиралась бы атмосфера, если бы плотность воздуха была всюду одинакова, а не менялась бы с высотой? Это определить не трудно. Мы знаем, что столб воздуха, простирающийся до самых пределов атмосферы, весит 10 500 кг при основании в 1 кв. м. С другой стороны, известно, что 1 куб. м сухого воздуха весит 1,29 кг. Стало быть, такая "однородная атмосфера" простиралась бы на высоту во столько раз большую 1 м, во сколько раз 10500 больше 1,29. Расчет дает 8140, т. е. искомая высота равна приблизительно 8 км. Таким образом, уже вершина Эвереста лежала бы за пределами однородной атмосферы.
БАРОМЕТР И ПОГОДА
Даже из образованных людей многие убеждены, что барометр "показывает погоду", настоящую или будущую. В этом заблуждении поддерживает публику обыкновение мастеров, изготовляющих барометры-анероиды, писать на их циферблате: "ясно", "переменно", "дождь", "буря" и т. п. Барометры-анероиды основаны на том, что металлическая коробка, из которой выкачан воздух, немного сплющивается под влиянием внешнего атмосферного давления, и эти изменения коробки передаются при посредстве рычагов стрелке, движущейся по циферблату. Циферблат обычно разделен на деления, отвечающие миллиметрам ртутного столба (в старых приборах — на дюймы). Анероид, даже выверенный и точный, должен постоянно сравниваться с ртутным барометром, так как показывает, строго говоря, лишь изменения давления, а не абсолютную его величину. Правда, в хороших и правильно установленных анероидах ошибка сравнительно невелика. В публике же чаще всего распространены дешевые анероиды, установленные без сравнения с ртутным барометром и, конечно, не принимая в расчет высоты того места, для которого предназначен анероид. Публика этим, впрочем, не интересуется. Она смотрит прежде всего на надписи, которыми украшен циферблат, и когда стрелка стоит на "великой суши", а моросит дождь, или если стрелка показывает "дождь" в солнечную погоду, владелец барометра бранит и его и метеорологов. Виноват между тем он сам, потому что не потрудился узнать, что не только анероид, — который прежде всего может быть неправильно установлен, — а и самый совершенный ртутный барометр вовсе не обязан предсказывать погоду.
Барометр показывает давление воздуха, а оно зависит от высоты места. В одну и ту же погоду барометр на вершине горы будет стоять на "великом дожде", в то время как внизу он покажет "ясно". Давление, низкое для Ленинграда, будет высоким для Москвы, лежащей выше. Но допустим, что мы учли это, введя поправку на высоту, или, как говорят, "приведя давление к уровню моря". (Это делается при помощи особых таблиц, а для высот, близких к поверхности земли, до 900—1000 м, можно грубо принять, что разность давлений в 1 мм отвечает разности высот в 11 м). Все же, как увидим дальше, погода вообще зависит не столько от давления, сколько от его изменений, а кроме того еще от целого ряда многообразных условий. Правда, до известной степени можно сказать, что при продолжительном высоком стоянии барометра обычно бывает ясная и тихая погода, при резком же падении — надо ждать дождя и сильного ветра. Но это имеет значение лишь относительное, и сердиться на барометр, когда он "врет", нет никаких оснований.