ВЫСОКИЕ СЛОИ АТМОСФЕРЫ

ЧТО ДЕЛАЕТСЯ В ВЫСОКИХ СЛОЯХ АТМОСФЕРЫ?

Как же далеко простирается нагревание от земной поверхности? И каких температур надо ожидать в верхних слоях атмосферы?

Вопрос этот, естественно, давно интересовал ученых, и первым шагом к его разрешению были измерения температуры при полетах на воздушных шарах. Наибольшая высота на воздушном шаре была достигнута в июле 1901 г. метеорологами Берсоном и Зюрингом: 10 800 м, где они отметили температуру около минус 40°. В 1931 и 1932 г. этот рекорд был значительно превышен проф. Пикаром, а в 1933 году полетом советского стратостата "СССР" и в 1934 — стратостата "Осоавиахим 1". Эти полеты описаны дальше.

Подъем на воздушном шаре, однако, дело сложное, и поскольку человек стремится всюду, где можно, заменить себя машиной, так и здесь возникла мысль отправить в неведомые высоты прибор, который сам записал бы температуру воздуха.

Мысль о таких подъемах была высказана еще Ломоносовым в 1754 г.: он построил "маленькую машинку, которая бы вверх поднимала термометры и другие малые инструменты метеорологические".

И в протоколе заседания Академии Наук от 1 июля этого года говорится: "Ломоносов показывал изобретенную машину, которую он называет аэродромическою. В этой машине при помощи крыльев, приводимых в движение часовой пружиной, нагнетается воздух, и машина поднимается вверх, чтоб при помощи присоединенных к ней метеорологических приборов можно было исследовать состояние верхнего воздуха".

Однако, о дальнейшей судьбе этой машины и о полученных с ее помощью результатах до нас ничего не дошло.

Практическое осуществление научных подъемов на шарах, о которых дальше будет сказано подробнее, принадлежит французам — Эрмиту и Безансону (1893), но систематические исследования этим путем были произведены лишь в 1899–1902 гг. французом Тейссерен-де-Бором и немцем Ассманом. Их по справедливости и можно назвать "отцами аэрологии" — науки о верхних слоях атмосферы. Они применяли небольшие шары из бумаги или материи, наполнявшейся водородом; привязанный к ним легкий прибор записывал во все время полета температуру и давление воздуха, а затем, когда шар лопался, спускался на особом парашюте. Впоследствии стали делать шары из резины, что гораздо удобнее.

Ряд подобных подъемов в различных странах обнаружил неожиданный факт: оказалось, что температура падает лишь до высоты 10–12 км, где достигает примерно лишь 55°, а дальше, сколько ни поднимались (в отдельных случаях шары достигали высоты 36 км), температура остается почти постоянной или даже слегка повышается.

Это показалось вначале настолько удивительным, что метеорологи склонны были приписать такой результат ошибкам приборов; но так как все подъемы, когда бы и где бы их ни делали, давали примерно все тот же результат, пришлось признать его реальным. Это явление получило название "верхней инверсии" (обращения) температуры: вместо падения — повышение.

Рис. 6. Первый подъем большого шара-зонда ("Аэрофил") во Франции. (Со старинного рисунка.)

Вскоре ученые нашли и теоретическое его объяснение: вследствие равновесия между лучистой энергией, идущей от Солнца, и энергией, излучаемой обратно в пространство от Земли, на некоторой высоте должен образоваться слой постоянной температуры.

В настоящее время вполне установлено, что наша атмосфера состоит из двух областей. Нижняя простирается от поверхности Земли примерно до 10–12 км и носит название "тропосферы". В ней происходят непрерывные подъемы и опускания воздушных масс, образуются облака, дожди, вихри; вообще это неспокойная и неустойчивая зона. В сравнении с размерами Земли слой этот чрезвычайно мал: если изобразить земной шар окружностью диаметром 10 см, то толщина самой линии этой окружности — примерно 0,1 мм — будет отвечать толщине тропосферы. И однако, этот слой играет наиболее значительную роль в земной погоде.

Как показывают наблюдения, в тропосфере температура падает примерно на 0°,5–0°,7 при поднятии на каждые 100 м (летом несколько больше, чем зимой) и у границы тропосферы достигает минус 50–60° Ц. Граница эта у экватора выше, чем над полюсами, и температура у границы там ниже, чем в более высоких широтах. Для средних широт тропосфера кончается на высоте около 10–11 км, и температура на ее границе составляет около минус 55°; наблюдения же над озером Виктория Нианца (в экваториальной Африке) показали, что тропосфера кончается там на высоте около 16 км с предельной температурой около минус 80°.

Рис. 7. Кривые, изображающие изменение температуры с высотой в свободной атмосфере зимой (левая кривая) и летом (правая). Перегиб кривой показывает конец тропосферы и начало стратосферы, которое летом лежит несколько выше, чем зимой.

Выше тропосферы лежит слой, где температура почти не меняется; там, по-видимому, уже нет никаких восходящих или нисходящих движений воздуха, остаются одни горизонтальные перемещения; эта сфера носит название "стратосферы". Она исследована очень мало, и где она кончается, — неизвестно. Самый высокий шар, поднимавшийся до высоты около 36 км, обнаружил до самого конца все ту же температуру, что и при начале стратосферы. Теоретические выводы различных ученых также расходятся в этом вопросе. Одни считают, что с некоторой высоты опять начинается падение температуры и на высоте 80 км она уже ниже — 100°. Другие предполагают, что в верхних слоях начинается возрастание темпера туры, и в результате она доходит до очень высоких значений. Кто прав, пока неизвестно. Неизвестен и состав воздуха на больших высотах, если вообще то, что там имеется, можно назвать "воздухом" в привычном для нас смысле: даже на высоте 40 км он разрежен почти в тысячу раз по сравнению с воздухом близ поверхности Земли.

ИЗ ЧЕГО СОСТОИТ ВОЗДУХ НА ОЧЕНЬ БОЛЬШИХ ВЫСОТАХ?

До высот, доступных человеку, воздух имеет примерно один и тот же состав: 79 частей азота, около 21 части кислорода и незначительные примеси углекислоты, аргона, гелия и водорода. Каждый ив газов ведет себя так, как если бы он был один и составлял свою особую атмосферу. С удалением от Земли уменьшается и давление каждого из газов; причем чем тяжелее газ, тем его давление с высотой падает быстрее, так как его больше остается внизу. Поэтому чем выше, тем меньше воздух должен содержать тяжелых газов — кислорода, азота — и больше легких — водорода и гелия. Сколько именно и на какой высоте, — можно рассчитать по содержанию каждого газа в нижних слоях; но это дело очень тонкое, и для тех газов, которых у Земли весьма мало, малейшая ошибка в определении их количества внизу даст значительную разницу наверху. Поэтому различные метеорологи получили неодинаковые схемы состава воздуха на высоте. Здесь приведена одна из позднейших по времени схем — схема Гемфриса.

ЧТО ГОВОРЯТ ПУШКИ О СТРОЕНИИ АТМОСФЕРЫ?

Оказывается, пушки могут сказать в этом вопросе довольно веское слово. При очень сильной орудийной пальбе (или при взрывах) замечено, что гул от них бывает слышен на некоторое расстояние от места стрельбы, дальше он не слышен, а еще дальше — примерно на 100 км — опять слышен. Отчего получается такая "зона молчания"? Естественно было предположить, что вторичное появление звука вызвано отражением звуковых волн от границы между слоями воздуха различной плотности. Расчет показывает, что такая граница должна лежать на высоте около 70 км. Эта высота примерно отвечает высоте водородной сферы, теоретически вычисленной Гемфрисом.

Любопытно, что на ту же высоту указывают и наблюдения над, светом неба во время сумерек. Если в ясный вечер мы будем внимательно наблюдать небо после захода Солнца, то заметим, что оно темнеет не постепенно, а как бы скачками; происходит словно опускание за горизонт нескольких последовательных светлых дуг. Первая дуга скрывается тогда, когда Солнце опустилось на 8° ниже горизонта. Вычисление показывает, что это соответствует отражению лучей Солнца от слоя, лежащего около 11 км над Землей: это — граница стратосферы. Вторая более слабая дуга исчезает при опускании Солнца на 17° ниже горизонта; высота этого отражающего слоя определяется примерно в 74 км; очевидно, это — предполагаемый слой водорода, о котором свидетельствуют и пушки. Есть еще третья, очень слабая дуга, момент исчезновения которой отвечает еще какому-то слою на высоте около 200 км. После этого сумерки кончаются, наступает ночь. Все это можно видеть и утром, до восхода Солнца, но в обратном порядке.

СЕВЕРНЫЕ СИЯНИЯ И ТАИНСТВЕННАЯ ЗЕЛЕНАЯ ЛИНИЯ

Полярные сияния, эта великолепная небесная иллюминация, о которой у нас еще будет речь ниже, — представляют собою в грандиозном масштабе подобие того свечения, какое мы наблюдаем в Круксовых трубках при прохождении через них электрического тока. В этих трубках воздух чрезвычайно разрешен, примерно так же, как в высоких слоях атмосферы. В последнее время удалось получить фотографии различных видов северных сияний; снимая одно и то же сияние с двух станций, расстояние между которыми известно, норвежский ученый К. Штермер определил их высоту. Оказалось, что сияния разыгрываются на громадных высотах от 90 км до 700 км. Значит, еще и на 700 км есть следы какого-то газа, потому что в пустоте свечения быть не может. Что же это за газ?

В спектре северных сияний открыта особая зеленая линия, которой нет в спектре ни одного из известных на земле элементов. Об ее происхождении физики до сих пор ломают себе голову. Германский метеоролог А. Вегенер высказал догадку, что самые высокие слои атмосферы состоят из очень легкого газа "геокорония" ("гео" — земля), опираясь на то, что подобная же зеленая линия встречается в спектре солнечной короны Норвежец Вегард предположил, что таинственная линия принадлежит кристаллическому азоту, носящемуся в пространстве в крайне распыленном состоянии. Действительно, в лаборатории ему удалось получить кристаллический азот, спектр которого давал похожую зеленую линию. Но обе теории встречают очень серьезные возражения, и вопрос о зеленей линии и вообще о составе воздуха на этих громадных высотах надо пока считать открытым. Самые последние работы заставляют скорее всего предполагать, что зеленая линия принадлежит кислороду, атомы которого переходят в особое состояние под влиянием ультрафиолетовых лучей Солнца.

АТМОСФЕРНАЯ ШИРМА ОТ СОЛНЕЧНЫХ УДАРОВ

Недавно исследованиями французских ученых установлено, что на высоте 35–40 км в атмосфере лежит слой озона, крайне разреженный, но имеющий для обитателей Земли весьма большое значение. Полагают, что этот слой задерживает излучения Солнца, которые вредны и даже могут быть смертельны для живых организмов. Иногда этот слой озона меняет свою плотность. Н которые ученые тот факт, что солнечные удары в жарких местностях иногда особенно учащаются, объясняют такими колебаниями плотности, а следовательно, и проницаемости для излучений Солнца.

В 1929 г. собралась в Париже международная конференция по исследованиям озона в атмосфере. Оказывается, что распределение озона различно в различное время года и при различных условиях погоды, но причины этого пока не выяснены.

В СТРАТОСФЕРУ НА РАКЕТЕ

Вот как много интересного кроется в высоких слоях атмосферы: целый ряд загадок, разрешение которых стоит на очереди. Только туда не легко пробраться. В последнее время Гемфрис предложил такую идею прибора для определения состава воздуха на очень больших высотах: выпускается ракета с герметически закрытой трубкой в своей головной части; трубка изолирована от окружающего воздуха (из нее воздух по возможности выкачан) и окружена водой или льдом. Когда ракета достигает наибольшей высоты, конец трубки автоматически обламывается, в нее входит внешний воздух, и трубка опять автоматически запаивается. В этот же момент ракета дает световой сигнал, позволяющий с поверхности Земли определить ее высоту. Если бы проект Гемфриса удалось осуществить, мы имели бы пробу воздуха, взятую с определенной высоты. Тейссерея-де-Бору удавалось брать такие пробы при помощи приборов, поднимавшихся на шарах, но ракета позволит взять их с таких высот, куда шары не достигают.

Конечно, осуществление такого проекта связано с целым рядом технических трудностей, но они безусловно преодолимы. И если надеются со временем осуществить межпланетные перелеты на ракете, то проникнуть на ракете в стратосферу, а тем более пустить туда ракету без пассажиров — вероятно, дело уже недалекого будущего.

Рис. 8. Схема строения атмосферы по Гемфрису. До высоты 60 км состав воздуха почти не меняется. Между 60 и 80 км количество азота резко падает, уступая место водороду и гелию. Выше 200 км — водородная атмосфера.

В СТРАТОСФЕРУ НА ВОЗДУШНОМ ШАРЕ

Как бы хорошо ни выполнила свою задачу ракета, все же человек лучше проведет наблюдения! И вот нашелся ученый, который решился на смелый полет в недоступные до сих пор слои атмосферы. Это брюссельский профессор Пикар, швейцарец по происхождению, имя которого, благодаря его полету, получило мировую известность.

Несмотря на тщательно обдуманный план этой воздушной экспедиции, первые попытки полета в 1930 г. окончились неудачей. Но вот, 27 мая 1931 г. Пикар с ассистентом-физиком Кипфером вновь поднялись из Аугсбурга (в Германии) на специальном аэростате емкостью в 14000 куб. м. У земли он был раздут лишь на 1 / 6 своего объема; поднимаясь, он постепенно должен был все более приближаться к шарообразной форме, и на высоте 15 км диаметр его должен был дойти до 30 м! Сами путешественники сидели в алюминиевом шаре, который был закрыт герметически, и таким образом им обеспечивался запас воздуха нормального состава и давления, необходимый для человека. Эта кабина была окрашена в черный цвет, чтоб ее поверхность поглощала солнечные лучи и благодаря этому нагревалась.

Шар поднялся необычайно быстро и уже через 20 минут достиг высоты почти 16 км — подъем совершался с громадной скоростью, около 9 м/с. От столь быстрого подъема и начального толчка произошла авария с некоторыми приборами и было повреждено приспособление для маневрирования. Из-за этого смелые воздухоплаватели были вынуждены оставаться на высоте 16 км в течение 16 часов, что в виду ограниченного запаса воздуха в кабине грозило им удушьем. К тому же "отопление" солнечными лучами оказалось столь сильным, что, несмотря на низкую температуру (около —55°) окружающего воздуха, в кабине получилась температура до +40°. В конце концов воздухоплавателям удалось благополучно спуститься уже поздно вечером, в горах, на поверхности ледника близ деревушки Гургль (Тироль).

Сенсация, произведенная этим полетом, была грандиозна. В маленькую тирольскую деревушку наехало столько корресподентов и прочей публики, что оказалось невозможным их прокормить и пришлось посылать за продовольствием в Инсбрук! Пикар, однако, хотя и достиг высоты, на которой до того еще не бывал ни один человек, остался недоволен результатами полета, так как ряд задуманных им наблюдений не удался из-за порчи приборов и невозможности регулировать высоту шара; он тут же решил повторить свое смелое предприятие.

Рис. 9. Стратостат Пикара.

ЛУЧИ ИЗ НЕВЕДОМЫХ ПРОСТРАНСТВ

Основной задачей Пикара было изучение "космических лучей". Дело в том, что воздух обладает известной радиоактивностью, источником которой служат, казалось бы, радиоактивные вещества почвы. Однако подъемы на аэростатах на сравнительно небольшие высоты обнаружили, что радиоактивность воздуха не уменьшается, а увеличивается по мере поднятия над Землей. Это означает, что есть и иные источники радиоактивности, помимо земных; может быть, они находятся на Солнце, может быть где-то еще дальше, на звездах, в глубинах мирового пространства. Усилия ученых различных стран направлены к выяснению происхождения этих "космических лучей", проникающих через толщу атмосферы на земную поверхность.

С высотой влияние атмосферного поглощения становится все меньше: на высоте 16 км над наблюдателем остается всего только 1 / 10 всей массы атмосферы, а подъем в еще более высокие слои дал бы возможность изучать космические лучи в еще более "чистом" виде. Понятно поэтому стремление ученых достичь возможно большей высоты.

Рис. 10. Гондола стратостата Пикара

ВТОРОЙ ПОЛЕТ НА ШАРЕ В СТРАТОСФЕРУ

Пикар вторично поднялся на том же шаре в стратосферу 18 августа 1932 г. с Цюрихского аэродрома; спутником его на этот раз был д-р Козине. Пикар принял ряд предосторожностей, чтоб подъем произошел не так быстро, и регулирование высоты шара было обеспечено. На этот раз ему удалось подняться на 500 м выше; эта высота—16500 м — была достигнута примерно через 7 часов после вылета шара. Вечером того же дня шар благополучно спустился в Италии. Интересно заметить, что, наученный предыдущим опытом чрезмерного "отопления" кабины, Пикар теперь окрасил ее в белый цвет. Теперь она не поглощала, а отражала солнечные лучи, и температура в ней упала до —15°, так что на этот раз воздухоплаватели мерзли. Пикар резонно замечает по этому поводу, что следовало выкрасить кабину в серый цвет.

ВПЕЧАТЛЕНИЯ ПРИ ПОЛЕТЕ В СТРАТОСФЕРУ

Вот несколько выдержек из дневника Пикара во время полета и из его статьи, перевод которой был напечатан в "Известиях" осенью 1932 г.

"5 часов 45 м. Давление 257 мм. Через две минуты шар, почти принявший сферическую форму, достигает 8500 м — высоты Эвереста. Внутри кабины образуется легкий белый налет… Вследствие наружного холода кабина быстро покрылась внутри слоем великолепного инея. 7 ч. 11 м. Давление 93 мм. Температура на полу кабины —5°, на высоте головы человека +1°. Кабина сверкает, как хрустальный грот; свисают тонкие ледяные иглы, сталактиты… 10 ч. 36 м. Давление 73 мм. Небо имеет цвет не синий, а средний между темно-лиловым и аспидно-серым. 12 ч. 13 м. Высота около 16500 м. Клапан открыт, чтоб возможно скорее спуститься в Италии. Спуск начался". "Мы научились отмечать на карте необитаемое небесное пространство, которое раньше или позже должно стать "стратосферными путями" сообщения и транспорта, как старинные мореплаватели учились отмечать на морских картах неоткрытые моря… Мой последний полет доказал, что полеты в стратосферу могут производиться без всякой опасности. Управление аэростатом не оставляло желать лучшего. Мы убедились, что посеребренная гондола так же мало желательна, как и черная. В последней мы страдали год назад от жары. На этот раз мы должны были выносить мороз в —15°, тогда как термометр с наружной стороны гондолы стоял между —50° и—60°".

ЧТО ЖЕ ТАКОЕ КОСМИЧЕСКИЕ ЛУЧИ?

Об этом втором своем полете Пикар пишет:

«Хотя наша работа над произведенными мною и Козинсом наблюдениями еще не закончена, мы уже обладаем достаточными знаниями, чтоб открыто признать, что до сих пор ничего еще нельзя считать установленным и космические лучи продолжают ревниво охранять свою тайну. Понадобится еще произвести многочисленные экспедиции на воздушном шаре, в частности, по крайней мере один успешный подъем в полярной области, где могут быть произведены наблюдения над действием; магнитных волн… Каковы бы ни были наши будущие открытия, можно с уверенностью сказать, что в скором (будущем мы сделаем крупный шаг вперед.

Объяснение природы космических лучей будет, быть может, иметь значение и для практического технического прогресса, что в первую очередь должно заинтересовать читателя. Я думаю бодрствуя, а не во сне, — о дешевой энергии будущих дней, о раздроблении бесконечной энергии атомов и молекул, находящихся повсюду вокруг нас. Хотя осуществление этих возможностей и может стать делом будущих поколений, они уже не являются мечтой, но занимают место среди реально осуществимых задач физики".

ШТУРМ СТРАТОСФЕРЫ

Исследование стратосферы представляет громадный практический интерес и помимо космических лучей. Ввиду отсутствия вертикальных течений, в виду ничтожной плотности воздуха, высокие слои атмосферы представляют заманчивый путь для воздушного транспорта; интересуется ими и артиллерия, так как сопротивление летящему снаряду сводится там к минимуму.

Овладение стратосферой — важная и вполне реальная очередная задача. И новый громадный — почти в 4 1 / 2 километра! — шаг вперед сделан здесь советскими работниками.

СОВЕТСКИЕ СТРАТОСТАТЫ

30 сентября 1933 года — исторический день не только для советского воздухоплавания, для советской науки, но и для мировой науки. В этот день стратостат "СССР" под командой Г. А. Прокофьева, с конструктором инженером Годуновыми пилотом Бирнбаумом поднялся на высоту 19 километров, более чем на 2 километра, побив рекорд Пикара.

Стратостат "СССР" был значительно больше, чем у Пикара: в то время как у стратостата Пикара максимальный объем был около 14000 куб. м, объем "СССР" был 25000 куб. м. Кабина, как и у Пикара, была шарообразная и имела голубую окраску. Как стратостат, так и кабина были построены целиком на советских заводах и из советских материалов.

В отличие от полета Пикара, который был в значительной мере частным предприятием, полет нашего стратостата происходил при самом широком участии общественности и научных работников Ленинграда и Москвы. Нашими метеорологическими учреждениями во главе с Главной геофизической обсерваторией была проведена громадная работа по постройке специальных приборов для исследования атмосферы на высоте, по исследованию условий погоды с целью выбора наиболее благоприятного времени полета, по организации наблюдений стратостата с земли: последнее было важно для сравнения высоты, полученной приборами на стратостате, с высотой, полученной геометрическим путем. Для определения высоты полета была создана специальная комиссия. Приборы для определения высоты были при подъеме запломбированы особыми металлическими пломбами.

Рис. 11. Наполнение|оболочки стратостата "СССР" перед полетом 30 сентября 1933 г.

Старт стратостата состоялся в 8 ч. 41 м… 30 сентября при великолепной тихой и ясной погоде. Приводим некоторые детали этого исторического полета, заимствованные из газет.

"29 сентября началось ярким солнечным утром. Стих ветер. Погода позволяла начать предварительные работы но подготовке стратостата "СССР" к полету. Днем был отдан приказ. На Центральный московский аэродром им. Фрунзе была доставлена огромная оболочка стратостата и все необходимое для старта.

В 2 часа ночи огромные газгольдеры, с водородом, каждый вместимостью по 125 куб. м, доставляются на аэродром и устанавливаются на стартовой площадке.

В небольшом здании главной аэрометестанции ВВС идет беспрерывная работа. Научные работники определяют точный режим погоды. В воздух пускаются шары-пилоты, проникающие в стратосферу. Все данные говорят о великолепных метеорологических условиях.

В 6 час. 20 мин. из ангара на поле выносится голубая гондола. Рядом с оболочкой стратостата — два "шара-прыгуна", которые предназначены для подъема, чтобы иметь возможность осмотреть уже наполненную оболочку.

8 часов утра. Еще 20 минут, и начинается пробное взвешивание всей системы стратостата в воздухе. Через 21 минуту — в 8 ч. 41 мин. — начальник старта тов. Гараканидзе подает команду:

— Отдать кабину!

И, обращаясь к командиру стратостата тов. Прокофьеву, говорит:

— В полете!

— Есть в полете! — отвечает тов. Прокофьев.

Быстро поднимается стратостат "СССР" в воздух.

Уже через 4 минуты стратостат достиг высоты в 3 тыс. метров и поднимался затем со скоростью 2 м в секунду.

В 9 час. 32 мин. стратостат достиг 17 500 м. Наружная температура —45 град. Скорость подъема около 1 м. Серебристый стратостат виден со всех концов Москвы невооруженным глазом. Огромные толпы людей собираются на улицах и наблюдают за полетом первого советского стратостата, который уже через 44 мин. поставил новый мировой рекорд.

Рис. 12. Оболочка стратостата "СССР" перед полетом 30 сентября 1933 г.

Следующая радиограмма, полученная со стратостата в 9 ч. 58 м. и адресованная начальнику военно-воздушных сил РККА тов. Алкснису, гласит:

"Давление 60 мм. По альтиметру высота 17 900. Руководствуюсь вашими указаниями. Привет от первого экипажа стратостата "СССР". Кислородные приборы работают пока хорошо. Кислорода достаточно. Температура в гондоле — +14 град. Солнечная сторона гондолы горячая, теневая — холодная, но не особенно сильно. Сейчас гондола поворачивается, таким образом — разогрев будет со всех сторон".

Напряжение растет. В небольшой комнате ГАМСа с волнением ждут и прислушиваются к передаваемым со стратостата радиограммам, В 12 ч. 13 м. экипаж стратостата сообщал:

"После израсходования маневренного балласта высота достигнута 18400. Давление 51 мм ртутного столба. Механизм сбрасывателя балласта работает хорошо. Клапан управления в порядке. Оболочка наполнена полностью. Через апендикс хорошо видна внутренность оболочки около клапана. Приветствуем рабочих заводов "Каучук" и им. Менжинского, НИИ Резинотреста, Главную геофизическую обсерваторию, Бюро постройки стратостата, как организаторов и строителей стратостата "СССР". Самочувствие экипажа хорошее".

В 12 ч. 49 м. принимается новая радиограмма:

"Алкснису, Хрипину. 12 ч. 45 м. Высота 19 км. Давление 50 мм. Радиограммы все приняты. Просим точнее следить за нашей высотой с земли."

И вслед за этим в 12 ч. 50 м.:

"Иду на посадку. Срочно отвечайте, снизились ли мы".

Стратостат шел на снижение. В район предполагаемой посадки выслали автомобили с научными работниками и представителями советской печати.

Рис. 13. Тов. Прокофьев, командир стратостата "СССР".

Несколько аэропланов быстро поднялось с аэродрома и пошло по направлению на Коломну. В 15 ч. 25 м. стратостат находился на высоте 14 км, в 15 ч. 40 м. — 13500 м, в 16 ч. 23 м. — км и быстро шел на снижение.

Ровно в 17 ч. на расстоянии 1/4 километра от Коломенского завода стратостат опустился на лугу у берега Москвы-реки. Стратостат и оборудование в исправности. Экипаж здоров.

После снятия комиссией пломб с приборов, результаты записей были переданы специалистам для обработки. Результаты записей самописцев, регистрировавших давление и температуру, хорошо сошлись с непосредственными наблюдениями по специальным барометру и термометрам. Вполне сошлась и высота, вычисленная на основании этих данных по барометрической формуле, с высотой, определенной помощью точных наблюдений стратостата с земли. Таким образом, одним из важных научных результатов подъема является проверка барометрической формулы.

Рис. 14. Тов. Годунов — строитель стратостата "СССР".

Другой важный результат: состав воздуха, согласно пробе, взятой с высоты 18500 м, оказался тот же, что и близ земли. Это, как будто, говорит не в пользу теории о преобладании на больших высотах более легких газов.

Получены также интересные данные по измерениям интенсивности космических лучей, сходные с данными, которые были получены Пикаром.

Единичные измерения могут иметь вообще хотя и весьма важное, но все же, лишь ориентировочное значение. Необходимо дальнейшее накопление наблюдательного материала с больших высот.

Важно, что сейчас мы имеем в руках испытанное орудие для научных наблюдений в виде стратостата; последующие полеты состоятся, вероятно, с участием специалистов-физиков, и сочетание искусного руководства полетом и научной тренировки должно дать еще более богатые результаты. И недалеко, повидимому, время, когда полеты в стратосферу станут столь же обыденным делом, как полеты на аэроплане в более низких слоях в настоящее время. Но честь и слава бесстрашным пионерам стратосферы!

Рис. 15. Тов. Бирибаум — пилот, третий участник полета стратостата — "СССР".

Что достичь столь большой, высоты — дело не такое уж простое, доказывает прежде всего то, что в Америке, признанной технически передовой стране, подъем в стратосферу 20 ноября 1933 г. достиг всего лишь 17700 м — ниже стратостата "СССР" на 1300 м. Научные результаты этого полета пока неизвестны.

Интересно отметить, что по получении известий об этом полете наши "стратоплаватели" одни из первых послали американцам свой привет и пожелание дальнейших успехов. Пикар же в значительной мере омрачил славу своего полета тем, что после успеха советских стратоплавателей стал распространять в публичных выступлениях слухи об аварии нашего стратостата, о неверности указанной в печати высоты подъема 19 км, и т. п. Так различно отношение к научным достижениям у нас и в капиталистических странах.

"ОСОАВИАХИМ 1"

Построенный ленинградскими инженерами при Осоавиахиме стратостат "Осоавиахим 1" (в общем сходный с "СССР") имел объем 25000 куб. м, диаметр свыше 35 м. Оболочка стратостата была сшита из прорезиненной алюминированной балонной материи. К стратостату подвешивалась металлическая, герметически закрытая гондола шарообразной формы, диам. 2,4 м, вместимостью 7 кбм. Она была целиком сварная и изготовлена из антимагнитной хромоникелевой стали, имела 6 окон и лаз, герметически закрываемый крышкой специальной конструкции. Все управление стратостатом было сосредоточено внутри гондолы. Клапанная веревка была введена в гондолу через трубку со ртутью, предохраняющую от просачивания воздуха из гондолы наружу. Балластом в стратостате "Осоавиахима" служила мелкая свинцовая дробь, и для выбрасывания ее в гондоле установлен был специальный выбрасыватель.

Рис. 16. Гондола стратостата "СССР".

Стратоплаватели, как при полете "СССР", так и участники полета "Осоавиахим", прошли под наблюдением врачей и физиологов длительную тренировку. На земле стратостат наполняется водородом всего на 0,1 своего объема; поэтому оболочка сначала напоминает собою грушу, а на большей высоте шар уже раздувается до полного объема, вследствие уменьшения давления. В гондоле стратостата "Осоавкахим" был установлен ряд научных приборов. Специальная камера Вильсона была предназначена для фотографирования путей космических лучей. Полет состоялся 30 января 1934 года и, благополучно достигнув рекордной высоты, при спуске закончился катастрофой, стоившей жизни отважным летчикам.[4]