НОВЫЙ РАЗВЕДЧИК АТМОСФЕРЫ

Конструктору будущих самолетов, которые за час пролетят тысячу, две, три, десять тысяч километров, нужно знать, что встретит его корабль в неизведанных высотах стратосферы.

Через атмосферу проходит начальная часть пути в космос. Не преодолев панциря атмосферы, нельзя вырваться в мировое пространство. Поэтому знание ее свойств необходимо и создателям космических кораблей.

Сделать это помогут ученым и конструкторам ракеты, поднимающие приборы на высоту в сотни километров.

…Похоже, что здесь работает экспедиция астрономов, которые готовятся наблюдать солнечное затмение. Телескоп направлен в небо. Перед окуляром телескопа — кинокамера. Сидящий в кресле наблюдатель смотрит во второй телескоп. И вся эта установка, повинуясь управляющему ею оператору, поворачивается, шаря по небу.

А может быть, это физики наблюдают за путешествием радиоволн в атмосфере? Ведь рядом — радиолокационная станция, и на экране локатора заметны отраженные сигналы. Возможно, что ученые следят за полетом метеоров.

Можно подумать и другое: не стараются ли здесь радиотехники поймать сигналы с какой-нибудь неведомой планеты? На приемной станции приборы ведут запись каких-то таинственных сигналов. Когда проявят кинопленку, увидят серию неровных полосок с извилинами и зазубринами, идущими одна за другой. Это чьи-то радиоголоса, пойманные и записанные на пленку. Радиосигналы несутся к нам от Солнца и из глубин вселенной. Не их ли слушают здесь астрономы?

Но нет, не ради Солнца, звезд или метеоров направлены в небо телескопы и радиолокаторы.

Оператор у телескопа держит в поле зрения снаряд, несущийся в стратосферу со скоростью около двух километров в секунду. За ним следит и локатор. Рядом приемная станция ведет запись радиосигналов с ракеты.

Когда расшифруют записи, они расскажут о космических лучах, о давлении и температуре воздуха, о поведении ракеты и ее двигателей. Так люди, не поднимаясь с земли, узнают все подробности полета на сотни километров ввысь.

Горячее дыхание Солнца греет воздух. На высоте около шестидесяти километров примерно семьдесят градусов тепла. Через двадцать километров — опять мороз в полсотню градусов. Здесь плавают серебристые облака, возможно состоящие из ледяных кристалликов. А затем снова теплый пояс, и чем выше, тем он становится жарче. Как показали измерения, сделанные с помощью ракет, на высоте ста двадцати километров температура достигает ста градусов тепла.

На ракетодроме.

Подтвердилось и то, что было известно по косвенным данным о давлении воздуха на больших высотах. Манометры показали падение давления по мере подъема: пятьдесят километров — пять десятых миллиметра ртутного столба, семьдесят пять километров — пять сотых, девяносто километров — пять тысячных.

Уже давно известно, что над нами царство вечного холода. Солнце греет Землю, Земля — воздух. Но земная поверхность — не настолько сильная печка, чтобы прогреть на всю толщину газовое одеяние нашей планеты. Опыт летчиков, альпинистов, стратонавтов, метеорологов показывает: чем выше, тем холоднее. Каждый километр подъема дает понижение температуры на шесть градусов. На высоте десяти с небольшим километров мороз достигает шестидесяти градусов. Здесь мы вступаем в стратосферу. Дальше температура не падает. Думали, что так будет и выше, пока где-то, где исчезают последние следы воздуха, не наступит холод мирового пространства.

Впервые усомниться в этом заставили наблюдения за звуками взрывов. В первую мировую войну были случаи, когда канонаду слышали на расстоянии до семисот километров и в то же время ее не слышали где-нибудь вблизи от места стрельбы. Такими же странными явлениями сопровождались случайные взрывы пороховых складов или извержения вулканов.

Почему возникают подобные «зоны молчания»?

Известно, что звук распространяется во все стороны. Чем дальше от места взрыва, тем он слышен слабее, пока, наконец, слышимость не исчезает вовсе — звуковая волна как будто замирает. Раз звук на далеком расстоянии появляется вновь, значит путь волны, идущей вверх, искривляется и она снова возвращается на Землю.

Окончательно это явление еще не разгадано, но именно оно натолкнуло на мысль о теплых слоях в стратосфере. Ученые предположили, что там есть слой теплого воздуха, менее плотного, чем холодный. Попадая в стратосферу, звук преломляется так же, как свет, переходящий из более плотной среды — воды — в менее плотную — воздух.

Все же тепло в стратосфере казалось невероятным, и предположение решили проверить. Но как это сделать, если наиболее мощное средство разведки больших высот — шар-зонд поднимается всего на сорок километров?

На помощь пришла ракета. Она помогла разгадать тайну больших высот.

Тепло на больших высотах не выдумка. Подтвердилось многое о чем раньше говорили наблюдения за звуком и сумерками, метеорами и серебристыми облаками. Сначала температура понижается плавно и неуклонно, пока не перестает ощущаться теплое дыхание Земли. Затем наступает холодный пояс, начинается стратосфера, и температура держится примерно постоянной — в среднем пятьдесят шесть градусов ниже нуля.

Наблюдение за полетом ракеты.

Но после тридцати километров появляется первый теплый пояс. Здесь расположен озоновый слой, образуемый и нагреваемый Солнцем.

Озон тот же кислород, но только в его молекуле не два кислородных атома, а три. Свежесть в воздухе после грозы — это запах озона, рожденного электрическими разрядами — молнией. В высоких слоях атмосферы невидимые ультрафиолетовые солнечные лучи дробят молекулы кислорода на атомы, которые вновь соединяются, но уже не попарно, а по три. Образуется озон. Часть его снова распадается на атомы, из них получаются молекулы кислорода. Солнце же опять делает из кислорода озон. Поэтому озоновый слой сохраняется в атмосфере постоянно.

Озона в атмосфере очень мало. Если собрать весь атмосферный озон в один слой у поверхности земли, то его толщина получилась бы всего три миллиметра. Несмотря на это, он служит чудесной газовой броней, защищающей все живое — растения, животных, человека — от губительных лучей. До Земли доходит только та их часть, которая не вредна для нас. Исчезни озоновый слой — и Земля через несколько минут обратилась бы в выжженную пустыню.

Проявлена пленка. На снимке — солнечные спектры, заснятые фотоаппаратом с ракеты на разных высотах. Чем выше был сделан снимок, тем длиннее ультрафиолетовая полоса. У самой Земли спектр как бы «обрезан». В этом виноват озоновый слой: он задерживает часть ультрафиолетовых лучей — наиболее энергичных, наиболее опасных для жизни на Земле.

Ракета в полете.

Из чего состоит воздух на больших высотах? Разные газы, тяжелые и легкие, составляют атмосферу. Не естественно ли думать, что они выстраиваются по рангу: тяжелые — ближе к Земле, легкие — дальше от нее. Атмосфера слоиста — так считали одно время.

Пробы, взятые при подъемах стратостатов и шаров-зондов, поколебали такое мнение. С величайшей осторожностью доставляли на землю драгоценные кубические сантиметры воздуха стратосферы. Анализ говорил одно и то же: состав воздуха всюду почти одинаков — кислород, азот, редкие газы.

А что делается выше сорока километров, каков воздух там? Самое простое — привезти пробу оттуда. Но на чем?

Помогла опять ракета, поднявшаяся на недосягаемые ранее высоты.

Уже давно знали о том, что Солнце, источник жизни, посылает в пространство и ультрафиолетовые лучи, могущие погубить жизнь.

Солнечный луч, в котором не только видимый свет, но и невидимое ультрафиолетовое излучение, пришел к нам из мирового пространства. Каким же он был там, до путешествия сквозь атмосферу, можно узнать, только поднявшись высоко вверх.

И об этом принесли вести с больших высот приборы, поднятые на ракете.

Но не только Солнце посылает свои лучи на Землю.

Внимание человека давно уже привлекли таинственные лучи из космоса. Их назвали космическими. Охотники за ними побывали глубоко в земле и высоко над нею. Шары-зонды поднимали приборы, а радио и автоматика помогали следить за их показаниями во время полетов в стратосферу.

Многое уже удалось узнать о лучах, идущих к нам из глубины вселенной. Но, как и солнечные, эти лучи доходят к нам сквозь атмосферу. В ней терпят они различные превращения, так что имеем мы дело в конце концов с потомками «настоящих» космических лучей. Чтобы узнать о настоящих космических лучах, приборы надо поднять еще выше, не на десяток-другой, а на сотню и больше километров.

И счетчик космических частиц совершил путешествие на ракете туда, где плотность воздуха в миллион раз меньше, чем у Земли, куда не заберутся ни стратостаты, ни шары-зонды.

Плотность воздуха в миллион раз меньше, чем у поверхности Земли! Но ведь и об этом мы до недавнего времени знали лишь из расчетов да наблюдений, которые нам давала природа: метеоры, сгорающие в воздушной броне планеты, полярные сияния, сумеречный свет, серебристые облака, плавающие очень высоко над землей.

Замечено, что вспышки на Солнце, за полтораста миллионов километров от нас, отражаются на состоянии атмосферы Земли, на погоде. Но механизм таких воздействий еще не ясен. Крайне важно было бы раскрыть и эту загадку.

Ракеты, поднимая приборы туда, где солнечные лучи встречаются с воздушной оболочкой Земли, помогают узнать истину и в дальнейшем дадут возможность совершенствовать методы прогнозов погоды.

Разве не интересно для географа посмотреть, как выглядит наша планета с огромной высоты? У нас есть превосходные снимки Луны с высоты всего нескольких сотен километров. Телескоп приблизил лунную поверхность, и на фотографиях так отчетливо видны все подробности рельефа, как если бы мы наблюдали его из окна ракеты. Стратостаты привозили нам фото Земли с высоты двух десятков километров. На этих снимках Земля плоская, и надо подняться гораздо выше, чтобы лишний раз убедиться в том, что наша планета — шар, что мы жители земного шара. Снимков же нашей планеты «со стороны» не было до последнего времени. Ракеты привезли такие интереснейшие снимки земной поверхности, заснятой фотоаппаратом с высоты около двухсот километров. Сквозь вуаль атмосферы видна Земля, как на крупномасштабной рельефной карте. И ясно, что перед нами кусочек поверхности шара.

Так с появлением ракеты — нового разведчика больших высот — начался новый этап в изучении и покорении воздушной стихии.

Конечно, это все еще только начало. Трудности создания летающей лаборатории чрезвычайно велики.

Плавно поднимается вверх воздушный шар. Стратонавты могут регулировать скорость подъема, заставить стратостат остановиться, чтобы произвести наблюдения. На «потолке», в высшей точке подъема, они находятся даже не короткие минуты, а час, полтора, два. За это время многое можно успеть сделать.

Сложнее вести наблюдения с ракеты, которая мчится быстрее снаряда дальнобойного орудия, все ускоряя полет, пока работают двигатели. Приборам нужно в считанные минуты полета «поспеть» за стремительным бегом стратосферной ракеты. Манометры и термометры должны мгновенно отзываться на перемену условий полета. Всякий же измерительный прибор обладает инерцией, и его показания могут отставать, когда обстановка быстро меняется.

Отделилась головная часть ракеты, где находятся приборы.

Приходится обходить эти трудности. Вместо одной величины, которую трудно прямо измерить, измеряют другую, связанную с нею математической зависимостью. Так, например, известно, что скорость звука зависит от температуры среды. И вместо того чтобы измерять температуру, можно узнать, как изменяется скорость звука при полете ракеты на разных высотах. Зная это, нетрудно вычислить и температуру.

Стараются уменьшить инерцию приборов, создавая для них еще более острые «органы чувств» — приемники измеряемых величин. Так, есть вещества, реагирующие — и притом практически мгновенно — на изменения температуры в тысячные доли градуса. Ими уже можно пользоваться при полетах хотя бы и в пять-семь раз быстрее звука — с такими скоростями летают сейчас ракеты.

Приходится учитывать и то, что случается в полете с самой ракетой.

Она нагревается от трения о воздух, а это влияет на термометр, установленный снаружи. На большой скорости возникают воздушные уплотнения. Они могут отразиться на показаниях манометра, приемник которого обтекается сверхзвуковым потоком. Ракета вращается в полете, колеблется, а приемник солнечных лучей должен быть обращен все время к Солнцу. Автоматическое устройство с фотоэлементом — «искатель Солнца» — помогает постоянно ловить солнечные лучи. Иногда приборы для исследования излучений или автоматические фотоаппараты помещают в камеру, которая выбрасывается из ракеты на «потолке» и отдельно на парашюте спускается на Землю.

Немногочисленны все-таки и кратки пока подъемы ракет в стратосферу и выше, в еще более разреженные воздушные слои — ионосферу. Но чем дальше, тем выше и чаще будут подниматься ракеты. Уже на четыреста километров поднимались они, уже не один, а десятки полетов совершили ракеты, хотя каждый полет — дорогое и сложное дело.

Можно думать, что со временем метеорологи станут регулярно зондировать атмосферу ракетами, систематически изучая самые высокие области воздушного океана. Это расширит наши знания о «кухне погоды». Человек будет не только наблюдателем, но и хозяином воздушной стихии, повелителем грозных сил природы.