Изучение вопроса о происхождении угля так же старо, как и использование входящих в его состав веществ для потребностей современного хозяйства. Немало создавалось гипотез и теорий, пытавшихся осветить таинственный мрак, окружающий вопрос о возникновении угля. В итоге всех этих теорий приходится сказать, что в настоящее время мы почти не знаем тайн в области химического состава угля, но покров, простирающийся над темными глубинами, откуда мы добываем черный алмаз, еще не окончательно поднят. В настоящее время в лабораториях, в глубинах самих шахт или за письменными столами тысячи людей ломают себе головы над сущностью черного алмаза, и эта загадка, по нашему мнению, останется такой же навсегда[5].

Не мало делалось попыток создания искусственного угля, чтобы таким образом, во-первых, получить доказательства происхождения угля и, во-вторых, получить суррогат продукта, который впоследствии будет расточаться землей уже не с такой щедростью, как теперь. Среди этих опытов следует указать на те, которые направлены на создание из растительных веществ продуктов для получения из них энергии.

Попытки использовать в энергетических целях растительные вещества столь многообразны, что они заслуживают известного упоминания. В настоящее время известно несколько способов получения жиров из растительных продуктов, причем существенным является их назначение, т. е. должны ли жиры и масла применяться для человеческого питания или для технических и топливных целей. В прежнее время масличные семена выжимались в маслобойнях посредством толчейных машин, в настоящее время они размалываются на плющильных станках между гладкими чугунными валами и бегунами. Затем сырье выжимается между сукнами из овечьей или верблюжьей шерсти посредством воды и гидравлического давления. Жмыхи, получаемые в виде отброса при этом процессе, в 1913 г. в Германии оценивались в сумме свыше 80 млн марок.

Другим способом извлечения жиров и масел из растений является метод экстрагирования. Он основан на том, что растительные жиры легко поглощаются определенными жидкостями, а затем освобождаются от них. Основанная на этом принципе в 1885 г. отрасль промышленности работала первоначально с сернистым углеродом. Впоследствии, по мере того как все более расширялась разработка угля и нефти, перешли к бензину, бензолу и тетрахлористому углероду. Все эти вещества обладают, правда, тем преимуществом, что они полностью извлекают из растений масла, но зато жиры и масла обычно сохраняют запах экстрагирующих веществ. Поэтому обычно добываемые этим путем масла и жиры идут на изготовление свечей и мыла.

Добывание жиров и масел из растений в будущем может иметь лишь небольшое значение в качестве подсобного источника энергии. Кроме того, эти методы слишком дороги для того, чтобы иметь возможность соперничать с углем или другими горючими материалами.

Большое значение в топливном хозяйстве будущего будет иметь, как предполагают, алкоголь. На мировой энергетической конференции в Лондоне в 1924 г., между прочим, обсуждался вопрос о топливе для двигателей внутреннего сгорания; К. Г. Бедфорд прочел очень интересный доклад на эту тему. Известно, что огромный приток нефти в американскую промышленность, давший столь мощный толчок развитию американской автомобильной индустрии, иссякнет приблизительно через 20 лет. Необходимо будет найти замену. В том случае, если до тех пор не будут открыты другие источники энергии, алкоголь приобретет в качестве горючего чрезвычайно большое значение. Уже в настоящее время во многих странах алкоголь употребляют для топливных целей или в чистом виде, или в смеси с нефтью, эфиром или бензолом. Разумеется, моторы внутреннего сгорания для сжигания чистого алкоголя требуют совершенно особой конструкции.

Количество веществ, из которых можно добывать алкоголь, чрезвычайно велико. Назовем хотя бы меляссу, побочный продукт сахарного производства, сахарный тростник, маис, картофель, различные злаки, мучнистые корни, содержащие крахмал, солому, опилки, стружки, некоторые травы и другие целлюлозные вещества. Делались опыты превращения растительных веществ с помощью кислот в сахар, из которого при дальнейшей обработке получался чрезвычайно высокий выход алкоголя.

Далее заслуживают внимания попытки использовать действие микроорганизмов на целлюлозу; впрочем, этот метод оказался нерентабельным. Очень многое зависит от выбора подходящих мест для устройства перегонных заводов, причем необходимо учитывать зависимость от сырья и транспортные условия. Тропические местности, например Индия, где имеется очень много рисовой соломы и слоновых трав для производства алкоголя, чрезвычайно удобны для этого. В Австралии, Новой Зеландии, Южной Африке, Родезии, в стране Ниасса, на Золотом Берегу, в малайских государствах и в Западной Индии уже с давних пор из имеющегося здесь сырья добывается алкоголь для энергетических целей. Еще совсем недавно техническое потребление алкоголя в Германии ограничивалось лишь немногими небольшими стационарными машинами, — за последние же десять лет все более и более расширяется потребление его автомобилями. Существует целый ряд запатентованных алкогольных смесей, как алкогаз, дискол и наталит. Последний почти вполне заменяет нефть. Смешанный с малоценной нефтью, он дает превосходное горючее, причем в машине, в связи с его применением, не требуется производить никаких изменений. Расходуется этого горючего, правда, несколько больше, но получаемая энергия также больше на 4–5 %. В Америке уже несколько лет тому назад появились опытные заводы, на которых имелось в виду организовать массовое производство алкоголя для двигателей. Во время войны однако они опять закрылись под давлением государственной нефтяной монополии.

Ганс Гюнтер в своей книге «Мечтания техники» обращает внимание на то, что в микроскопических зернах хлорофилла, наполняющих каждую клетку листка растения, пока светит солнце, беспрерывно происходит химический процесс превращения неорганических веществ в органические. При этом газообразная двуокись углерода, выдыхаемая животными и людьми, а также выделяемая гниющими органическими веществами и нашими топками, начисто разлагается на углерод и кислород, вслед за чем растение превращает отщепленный и поглощенный углерод сначала в сахар, а затем в крахмал. Необходимую для этого энергию растения получают от солнечных лучей. Искусственное воспроизведение этого процесса ассимиляции углекислоты до сих пор не удавалось.

Разумеется, можно использовать растения в качестве готового материала для топливных целей. Технические предпосылки этого изложил уже несколько лет тому назад итальянский химик Чиамичиан. Он вычислил, что земля в год производит 32 млрд т растительных сухих веществ, соответствующих 18 млрд т угля, что в свою очередь в 12 раз превышает количество угля, ежегодно потребляемого в настоящее время человечеством. Согласно А. Мейеру, возможно было бы ежегодную растительную продукцию увеличить в 4 раза, в тропиках же в еще большем размере. Итак, не представляло бы никаких трудностей полностью заменить уголь ежегодным приростом растительности.

В заключение назовем область, несколько далекую от нашей темы. Солнечные лучи, как известно, выполняют процессы, находящиеся в тесном родстве с теми, в которых значительную роль играет уголь. Упомянутый Чиамичиан указывает на то, что солнце может служить для выполнения известных химических процессов, которые в будущем могли бы быть использованы для получения энергии.

Как известно, в настоящее время это возможно только в фототехнике. Ассимиляционный процесс, совершающийся в растениях, может быть воспроизведен и искусственным путем. «Этот процесс, — пишет Чиамичиан, — является обратным обычному процессу горения. Всегда считали вероятным предположение, что первым продуктом ассимиляции является формальдегид». И в действительности, недавно Курциусу удалось доказать присутствие формальдегида в листьях бука. Искусственное воспроизведение этого процесса с помощью ультрафиолетовых лучей удалось Даниелю Вертело. Почему невозможно было бы с некоторыми изменениями рациональным образом использовать подобные лучи, которые, пронизывая всю атмосферу, достигают поверхности земли? Доказательством того, что это возможно, служат растения. С помощью подходящих катализаторов могло бы удаться также превращение смеси воды и двуокиси углерода в кислород и метан или проведение других, так называемых эндоэнергетических процессов.

Помимо этого процесса, при котором использованы были бы неутилизируемые до сих пор продукты сгорания, существуют еще другие, вызываемые ультрафиолетовыми лучами, которые однако, в зависимости от обстановки, могут происходить и под влиянием обычных световых лучей, при условии, если будут открыты подходящие чувствительные — реагирующие на эти лучи — вещества. Синтез озона, тройной окиси серы, аммиака, окисей азота и много других синтезов могут таким образом стать предметом промышленных фотохимических процессов.

Не приходится сомневаться в том, что непосредственный солнечный свет может быть применен и для производства красок, которые мы в настоящее время получаем из угля, как указывает в статье, помещенной в «Технише Рундшау» (1914 г.), Г. Дур. Он пишет следующее: «Фотохимия доказала, что фотохимическими свойствами обладают лишь лучи с волнами определенной длины, которые селективно поглощаются соответствующими веществами. Хлор и водород, которые в свете длинных волн, следовательно в желтом и зеленом свете, соединяются в соляную кислоту, в коротковолновом ультрафиолетовом свете снова распадаются. Химическая деятельность света усиливается в общем, начиная от красной части спектра в сторону синей и фиолетовой, и достигает высшей силы в ультрафиолетовых лучах. Уже в в настоящее время мы можем с помощью лучей с волнами определенной длины вызывать определенные химические действия. В будущем, по-видимому, возможно будет значительно расширить нашу власть над этими свойствами света. Нам удастся с помощью света различных волн производить органические вещества, изготовлять краски и т. д. на заранее точно рассчитанном месте, иначе говоря, так сказать, дирижировать работою света».

Чиамичиан приходит к следующему— правда, несколько фантастическому — выводу: «Там, где растительность отличается пышностью, фотохимическая работа будет возложена на растения, и, таким образом, путем рациональной культуры почвы, солнечная энергия будет эксплоатироваться в промышленных целях. В пустынях же, недоступных сельскохозяйственной обработке, чистая фотохимия в первую очередь будет служить для практического использования солнечной энергии. На бесплодных равнинах возникнут промышленные колонии, не знающие дыма и дымовых труб. В стеклянных зданиях и трубах будут протекать фотохимические процессы, которые до сих пор были достоянием одних растений и которые теперь будут использовываться человечеством в своих целях. Если в отдаленном будущем когда-нибудь истощатся угольные залежи, культура из-за этого не погибнет, ибо жизнь и культура никогда не замрут, пока светит солнце!»

Химическая техника стоит еще перед разрешением многих проблем, в первую очередь проблемы конструирования световых аккумуляторов. Как упомянуто, химикам известен уже давно ряд веществ, у которых под влиянием световых лучей изменяется не только цвет, но и химический состав, причем в темноте они восстанавливаются в прежнее состояние. Риголо изобрел уже в 1897 г. фотогальванический элемент, который имеет предшественника в виде элемента Бекереля, изобретенного еще в 1839 г. Вильдерман в последние годы изобрел светоэлектрический элемент, состоящий из двух покрытых хлористым серебром серебряных пластинок, погруженных в раствор хлористого натрия. В 1912 г. Винтер изобрел световой аккумулятор. Изобретатель исходил из того факта, что в одном растворе смесь хлористого железа и хлорной ртути (сулемы) под влиянием ультрафиолетовых лучей превращается в смесь хлорного железа и хлористой ртути (каломеля) и что этот процесс в темноте идет обратным путем. Изобретатель смог с помощью своего элемента получить электрическое напряжение в 0,1 вольт, а для того, чтобы получить напряжение свинцового аккумулятора, необходимо было бы соединить последовательно 20 подобных элементов.

Как видим, имеются зачатки совершенно новой науки фотодинамики, новой промышленности фотомеханики и нового хозяйства, современного светового хозяйства, все это при условии, что когда-нибудь удастся подслушать у природы ее тайны.

Производство угля непосредственно из дерева и растений стало возможно лишь в последние годы. Пользующийся широкой известностью в кругах исследователей угля профессор Венского университета Штрахе не так давно сделал открытие, имеющее, крупнейшее значение для мирового хозяйства. Он открыл способ изготовления угля из древесных отбросов, который нисколько не уступает нашему каменному углю. Ему удалось воспроизвести далеко еще не окончательно выясненный процесс разложения растительных веществ внутри земли, которому мы обязаны нашим, нынешним каменным и бурым углем; таким образом, при применении дерева возникает продукт, равноценный чистому каменному углю, и отныне химик в состоянии в любое время заменить естественный уголь — искусственным. Само собою понятно, что это изобретение еще не дает возможности окончательно вытеснить из оборота каменный уголь. Это и не входило в намерения ученого, как он сообщил автору этих строк. Проф. Штрахе между прочим пишет следующее: «Само собой разумеется, не может быть и речи об устранении монополии каменного угля уже по той простой причине, что запасы дерева, в частности в Европе, и в отдаленной степени не достаточны для того, чтобы хоть сколько-нибудь заменить потребление угля. Нами при этом изобретении руководило стремление использовать древесные отбросы для производства высокоценного топлива, а также придать процессу обугливания дерева такой характер, чтобы просто и без крупных затрат на сложные установки можно было получать и побочные продукты. Поэтому наш метод представляет нечто среднее между прежним методом угольных куч, пользование которым в настоящее время еще неизбежно в виду его простоты, но не дает побочных продуктов, и крупными установками для добывания древесного угля, в которых полностью получаются побочные продукты. Для крупных установок требуется однако колоссальный основной капитал, и они нерентабельны в случае необходимости доставки дерева из отдаленных местностей. С методом Бергиуса, который получал массу, аналогичную каменному углю, из целлюлозы, а также из дегтя, мой метод имеет очень мало общего. По теории Фишера и Шрадера, каменный уголь возникает не из целлюлозы, но из содержащегося в дереве лигнина. Если даже наш метод имеет некоторое сходство с этим преобразованием лигнина, то этим ни в коем случае не имелось в виду стремление подражать процессу естественного образования угля. Новое топливо, которое похоже на древесный уголь, но не совсем тождественно с ним, и которому мы дали имя „лигницит“, может добываться трех различных видов, аналогично возрасту различных сортов каменного угля — от пламенного угля до антрацита. Сорт, соответствующий антрациту, может в сущности при изготовлении получить более высокую калорийность, чем древесный уголь, и отличается от него также большей твердостью, в частности если в качестве сырья берется мягкое дерево. Все продукты из дерева имеют большое преимущество перед каменным углем, благодаря тому, что они свободны от серы, что для определенных промышленных целей имеет колоссальное значение. Наш метод имеет особое значение для лесистых местностей, в которых подвоз угля представляет трудности, а в особенности для работы генераторных печей, вследствие того, что наш материал, почти не дающий золы, весьма удобен для обслуживания генераторов. Стоимость производства определяется главным образом стоимостью доставки дерева, но не в столь большой степени, как в современных крупных заводах древесного угля, так как аппарат применим с успехом и в мелком производстве, благодаря чему возможна децентрализация производства древесного угля».

Вряд ли нужно доказывать экономическое значение этого нового изобретения, если только оно в будущем оправдает возлагаемые на него надежды, и из дерева и его отбросов в любое время и в любом месте можно будет изготовлять уголь, по химическому составу равноценный каменному углю. Таким образом устранялась бы зависимость промышленности при размещении ее предприятий от близости каменноугольных копей и одновременно исчезала бы тревога по поводу упадка угольной добычи в некоторых районах. В виду того, что уголь, как известно, в настоящее время, в конечном счете, является показателем экономического благополучия современных промышленных стран и стоимость всех предметов потребления современного человека, в конечном итоге, определяется стоимостью угля, это изобретение Штрахе несомненно имеет большое значение для экономической жизни. Однако натуральному каменному углю не приходится пока опасаться конкуренции со стороны искусственного прежде всего уже потому, что уголь, получаемый из земли, все-таки является более ценным, дешевым и выгодным, нежели искусственный уголь, изготовляемый в реторте химика. Как бы то ни было, производство зеленого угля представляет чрезвычайные выгоды, если не непосредственно для угольного хозяйства, то для хозяйственной жизни, уже по одному тому, что этот метод открывает новую отрасль применения лесного хозяйства, о котором мы уже говорили в первой главе нашей книги.