1. История открытия
В 1871 году в III томе «Журнала Русского физико-химического общества» появилась статья, в которой были даны подробные характеристики нескольких ещё никем не виданных элементов. Автор статьи предсказывал, какие еще должны быть открыты химические элементы, подробно описывал их свойства.
Что это было? Неосторожные высказывания какого-то химика, пытающегося на счастье угадать будущее? Нет, это было обоснованное научное предвидение крупного учёного. Это означало конец той неизвестности, той случайности, которые существовали до сих пор в науке об основных веществах мира.
В конце XVII и начале XVIII века было известно около 15 веществ, которые считались неразложимыми. Наступает вторая половина XVIII столетия, и учёные устанавливают, что число химических элементов значительно больше 15. К этому времени учёные открывают один за другим несколько ранее не известных газов, в том числе азот, водород, кислород, убеждаются в том, что сера и фосфор — это простые, неразложимые вещества, и т. д.
В конце этого же столетия был составлен первый наиболее полный для того времени список всех химических элементов. В этом списке уже 35 различных названий. Правда, лишь 23 из них — действительно химические элементы. Остальные 12 — это или несуществующие, невещественные элементы — теплород и другие, либо сложные вещества, такие, как едкий натр и едкий калий.
Но и этот список продолжает расти. С начала XIX столетия открытия новых химических элементов начинают происходить ещё более часто.
Теперь уже почти не проходит года-двух без того, чтобы кто-нибудь из химиков не открывал новый вид атома, новое химически не разложимое вещество.
«Охота» за новыми химическими элементами становится основным занятием многих крупных учёных-химиков.
Вместе с этим идёт изучение свойств вновь открытых элементов, определение их атомных весов.
Устанавливаются единые для всех стран химические обозначения — значки химических элементов. Каждый химический элемент получает свой значок, состоящий из начальной или начальной и одной из последующих букв его латинского названия. Так, углерод отныне отмечается буквой С, водород — Н, сера — S, ртуть — Нg и т. д.
А число «начал» мира растёт и растёт!
К 50-м годам прошлого столетия в химических руководствах описывалось уже свыше 50 различных неразложимых веществ.
И тогда новые сомнения начали одолевать учёных. Всё новые и новые элементы присоединяются к ранее открытым. И таким открытиям не видно конца. Не означает ли это, что различных сортов атомов в природе может быть почти так же много, как и самих тел?
Правда, узнавая состав сложных тел, химики видят, что большинство веществ состоит из небольшого числа элементов. Так, им уже известно, что в состав десятков тысяч веществ органического, «живого» происхождения входит всего-навсего каких-либо 6–8 простых веществ — углерод, водород, азот, кислород и некоторые другие.
Анализ наиболее распространённых на Земле минералов говорит о том же: и здесь чаще всего встречаются одни и те же немногие элементы — железо, кремний, кислород, алюминий, магний, кальций.
Однако поскольку всё время открывались, пусть редкие, но новые элементы, вопрос о числе элементов для химиков прошлого века не терял своей остроты.
И всё это усугублялось ещё одним обстоятельством. Открытия новых элементов были совершенно случайными. Учёные работали вслепую. Никто не знал, где мог оказаться новый элемент, каковы должны быть его свойства.
Действительно, так, например, был открыт новый элемент иод. Изучая золу морских водорослей, химик прибавил к ней однажды большее количество серной кислоты, чем обычно. И вдруг над раствором показались пары фиолетового цвета. Это оказался иод.
Так же случайно были впервые обнаружены бром, кадмий и другие элементы.
Всё было случайно!
А число элементов увеличивалось.
Где же был конец этим случайностям? Где тот закон, которому подчиняются сами атомы?
Ответ пришёл из России.
В марте 1869 года на заседании Русского физико-химического общества было зачитано замечательное сообщение молодого, но уже известного к тому времени химика Д. И. Менделеева. В своём сообщении Менделеев писал, что им создана естественная система всех химических элементов. На основе этой системы автор смело предсказывал также свойства новых, еще не известных ни одному человеку, простых веществ мира.
Помещённая через два года в журнале Русского физико-химического общества статья Менделеева уже более подробно излагала основы великого открытия. Статья называлась «Естественная система элементов и применение её к указанию свойств неоткрытых элементов». В ней Д. И. Менделеев писал:
«Свойства простых тел (элементов), а также формы и свойства соединений их находятся в периодической зависимости от величины атомных весов элементов».
Таким образом, Менделеев открыл давно искомое родство химических элементов, установил связь между разрозненными отдельными элементами мира, единство основных веществ мира, единство материи. Это было открытие нового великого закона природы, закона, которому подчинялись атомы всех элементов.
Дмитрий Иванович Менделеев родился в 1834 году в семье директора Тобольской мужской гимназии. Получив высшее образование в Петербургском педагогическом институте, Дмитрий Иванович очень быстро становится известным учёным. Двадцати двух лет он защищает диссертацию на степень магистра химии. В 1865 году, на тридцать втором году жизни, Менделеев получает учёную степень доктора наук.
Трудно немногими словами рассказать хотя бы об основных работах, выполненных великим русским химиком. В самых различных областях знания работал Менделеев. Он был одним из пионеров воздухоплавания; он разработал новый способ изготовления бездымного пороха; он подготовил введение в нашей стране метрической системы мер и весов; он первый указал на возможность подземной газификации углей, на значение подземных богатств Донбасса и Урала, на необходимость более полной, комплексной переработки нефти, на огромную энергию русских рек. И это только незначительная часть сделанного им.
Великий русский учёный Дмитрий Иванович Менделеев.
Но, несомненно, главнейшей заслугой Менделеева перед наукой и человечеством является его знаменитая периодическая, как ее называют, система элементов.
Какими же путями пришёл Менделеев к открытию великого закона природы и в чём сущность этого закона?
Еще студентом, досконально изучив всё, что было известно химикам его времени, Менделеев много думал над тем, каково общее число различных видов атомов, образующих различные элементы, что именно роднит, связывает друг с другом все химические элементы. Ответить на этот вопрос, интересовавший многих учёных и до Менделеева, было очень трудно. Слишком различные свойства имели известные химикам простые вещества. Тут были твёрдые тела, жидкости и газы; металлы и землистые вещества; вещества твёрдые и мягкие, стойкие и неустойчивые, тяжёлые и лёгкие.
Как найти общее в пестроте всех этих свойств? Как установить порядок в самих элементах? Чем объяснить их свойства?
Ответить на эти вопросы до Менделеева оказалось не под силу ни одному химику. Для этого нужен был человек с блестящими химическими знаниями, учёный, обладающий необыкновенным даром обобщения и предвидения, убеждённый в правоте своих взглядов и выводов, человек, мыслящий диалектически. Именно таким человеком и был Менделеев.
Отыскивая родство между столь различными по своим свойствам веществами, Менделеев настойчиво ищет то общее свойство, которое было бы присуще всем химическим элементам.
Что же может быть общего между такими, казалось бы, различными веществами, как мягкий, легко окисляющийся на воздухе, блестящий металл натрий и жёлтый, с резким удушающим запахом, легко окисляющий другие вещества газ хлор? Или сравним гибкую легко тянущуюся в виде проволоки, хорошо проводящей электричество, медь и хрупкую, не проводящую электричество, легко загорающуюся на воздухе серу.
Понадобился гений Менделеева для того, чтобы взять за основу общее свойство, которое присуще всем столь различным веществам, свойство, на основе которого можно было найти искомое родство химических элементов. Это общее всем элементам свойство — их атомный вес.
Не является ли атомный вес элементов в то же время свойством, их связывающим?
Не зависят ли свойства простых тел от массы, веса их атомов? Ведь не могли же химики назвать двух различных простых веществ с совершенно схожими свойствами, как не могли указать и двух элементов с совершенно одинаковыми атомными весами.
Так Менделеев приходит к убеждению, что количественная характеристика элемента, общая всем веществам, — его атомный вес — должна быть связана с его качеством, с его свойствами.
«Я был с самого начала глубоко убежден в том, — пишет Менделеев, — что самое основное свойство атомов, атомный вес или масса атомов, должно определять основные свойства каждого элемента… Я уже… в первые годы самостоятельного труда чувствовал, что должно существовать обширное обобщение, связывающее атомный вес со свойствами элементов… Я искал это обобщение с помощью усидчивого труда во всех возможных направлениях. Только весь этот труд дал мне необходимые точки опоры и вселил уверенность, позволившую мне преодолевать препятствия, казавшиеся тогда непреодолимыми…В короткое время я пересмотрел массу источников, сопоставляя огромный материал. Мне надо было, однако, совершить большое усилие, чтобы в имевшихся сведениях отделить главное от второстепенного, решиться изменить ряд общепризнанных атомных весов, отступить от того, что было признано лучшими тогда авторитетами. Сопоставив все, я с неотразимой ясностью увидел периодический закон и получил полное внутреннее убеждение, что он отвечает глубочайшей природе вещей».
Чтобы наглядно сопоставить различные элементы друг с другом, Менделеев записал все химические элементы, а их было известно к тому времени уже 63, на отдельные небольшие карточки. На каждой такой карточке были указаны, кроме названия элемента, его атомный вес и основные свойства. После этого учёный расположил карточки в таком порядке, что все элементы следовали друг за другом по мере увеличения их атомных весов. Первым в этом ряду был водород — атомы его имели самый маленький вес.
Много дней изучал Менделеев полученный ряд элементов и не находил в этой последовательности никакой закономерности. И действительно, ни один элемент не походил по своим свойствам в ряду Менделеева на своего соседа. Но учёный не сдавался. Он был твёрдо уверен в том, что в созданном им ряду элементов в порядке увеличения атомных весов должна существовать какая-то закономерность. И Менделеев снова и снова всматривался в ряд элементов, ещё и ещё раз сопоставлял их свойства друг с другом.
И победа пришла. Великий учёный подметил, наконец, ту не заметную для глаза последовательность в изменении свойств химических элементов, сходство свойств различных элементов в зависимости от их атомных весов. Это сходство наблюдается не у рядом стоящих элементов, а у веществ, отстоящих друг от друга на некотором расстоянии, разделённых иными, несходными элементами. В самом деле, вот, например, в ряду Менделеева на втором месте стоит элемент литий (рис. 6).
Рис. 6. Первая таблица химических элементов, составленная Д. И. Менделеевым в 1869 году.
Этот лёгкий металл по химическим свойствам относят к так называемым щёлочным металлам. Если бросить кусочек лития в воду, он будет соединяться с ней, образуя щёлочь. Следующие за литием шесть элементов ничем на него не похожи. Но седьмой элемент — натрий — оказывается по своим свойствам близким «родственником» лития; это так же щёлочной металл, он так же бурно и жадно соединяется с водой и другими веществами[1].
Пропустите снова шесть элементов, и вы увидите элемент калий — опять активный щёлочной металл.
Возьмите теперь не второй элемент в ряду, а третий — бериллий. И опять вы увидите ближайших родственников этого элемента не рядом, а дальше в ряду и на таком же расстоянии; следующие за бериллием шесть веществ непохожи на него, но седьмой — магний — по всем своим химическим свойствам очень похож на бериллий. Ещё через шесть элементов — новый родственник бериллия — кальций и т. д.
В четвёртом ряду Менделеева стоит элемент бор; этот элемент входит в состав борной кислоты и буры. Его ближайший родственник — алюминий, седьмой по счёту от бора элемент.
Таким образом, определённые свойства элементов в ряду Менделеева повторялись через определённый промежуток, через период элементов. Поэтому Менделеев и назвал свою таблицу элементов периодической системой элементов.
Наблюдая свойства элементов, заключённых в каком-либо одном периоде, скажем, в первом — от лития до натрия — Менделеев заметил и другую замечательную закономерность. Оказывается, свойства находящихся в одном периоде элементов изменяются не случайно, а строго следуя определённому закону.
Свойства элементов одного периода отражают всё многообразие свойств различных химических элементов!
В самом деле, в таблице в начале периода стоит литий; это активный элемент с ярко выраженными металлическими свойствами. За ним следует бериллий; это чуть менее активный металл; он уже не так похож на типичный металл. Третий элемент — бор — ещё менее похож на металл, химическая активность его ниже, чем у двух первых элементов. Дальше идёт углерод — основа всех органических веществ. Это уже «переходный» элемент — от металлов к неметаллам. Следующий элемент азот — первый в периоде металлоид[2] и самый малоактивный среди них. Он входит в состав воздуха и носителей жизни — белков. Идущий за азотом кислород уже более активен — он легко вступает в химическое соединение со многими веществами. Заканчивает период элемент фтор; это самый активный и ярко выраженный металлоид.
Так, в одном периоде мы видим полный набор самых различных элементов. Тут есть и металлы и неметаллы с их характерными признаками, и химически активные элементы и неактивные, с трудом вступающие в соединения элементы.
Неудивительно поэтому, что за такой группой элементов, охватывающей все их различные свойства, следуют элементы, свойства которых повторяют свойства веществ первого периода.
Таким образом, Менделеев открыл естественную последовательность элементов, ту последовательность, какую подсказывает сама природа.
Но и это было ещё не всё! Самое замечательное было в тех выводах, которые сделал Менделеев из своего открытия.
Располагая элементы в порядке возрастания их атомных весов, Менделеев делал это не ради того, чтобы любой ценой связать их свойства с их атомными весами. Совсем нет. Великий химик только искал более всеобъемлющую связь простых тел природы, указывающую на единство всех известных элементов. И вот, когда он нашёл периодическую зависимость свойств этих элементов от их места и от их атомного веса, то сразу же сделал правильный, гениальный вывод. Ведь теперь, зная, как именно должны изменяться свойства рядом стоящих элементов, зная, сколько элементов и с какими именно свойствами должно находиться в каждом отдельном периоде, можно проверить правильность атомных весов у различных элементов; мало того, можно видеть, где, в каких местах нет элементов с нужными для полного периода качествами, то-есть можно строго научно предсказать, какие элементы должны еще существовать в природе, предсказывать свойства этих неоткрытых веществ.
Вот какой замечательный вывод сделал из своего открытия Менделеев.
А сделав такой вывод, учёный смело приступил к исправлению и дополнению своей таблицы. Так, если строго следовать установленным атомным весам элементов, то элементы иод и теллур, например, нарушали последовательность свойств элементов в природе. Если же их переставить местами, то эта последовательность восстанавливается. Значит, так именно и нужно поместить эти элементы — иод за теллуром, а не наоборот, как следовало бы сделать, руководствуясь только атомным весом.
Атомный вес урана в то время считался равным примерно 120. Если верить этому весу, уран должен располагаться в середине менделеевской таблицы. Однако химические свойства этого элемента говорили о том, что его место должно быть в самом конце таблицы, там, где расположились химические элементы с большими атомными весами. И Менделеев смело исправляет ошибку — он увеличивает атомный вес урана вдвое. Так говорит периодический закон, и так должно быть в действительности. С новым атомным весом уран становится на последнем месте таблицы.
Проверка атомного веса урана, проведённая после этого, устанавливает, что Менделеев оказался прав.
Сравнивая далее свойства элементов по периодам, Менделеев увидел в отдельных местах разрывы в последовательности свойств. Например, на месте родственника алюминия стоял совсем не похожий на него титан. А от этого нарушалось сходство в периодах и у других элементов. Значит, на месте титана должен стоять какой-то другой, еще не открытый элемент, по своим химическим свойствам обязательно схожий с алюминием. И Менделеев оставляет на этом месте в таблице пустую клетку. Мало того, он подробно описывает все химические и физические свойства этого неизвестного химикам простого вещества — его цвет, растворимость, удельный вес и пр. Он настолько ясно представляет себе свойства этого никому неведомого элемента, что даже предсказывает, как будет открыто новое простое вещество. Менделеев пишет, что этот металл будет обладать большей летучестью, чем алюминий, а потому можно надеяться, что он будет открыт спектральным исследованием (особый способ физического исследования тел).
Таким же образом Менделеев оставляет пустые места и ещё для двух неоткрытых элементов — родственников кремния и бора.
Оставляя пустые клетки в своей таблице и описывая свойства ещё никем не виданных химических элементов, Менделеев был твёрдо уверен в правоте своего закона. Он был убеждён, что эти неизвестные пока элементы рано или поздно будут открыты.
«Мы не имели до сих пор никакой возможности предвидеть отсутствие тех или других элементов, — писал русский учёный, — потому именно, что не имели никакой строгой для них системы, а тем более не имели повода предсказывать свойства таких элементов. Решаюсь сделать это ради того, чтобы хотя со временем, когда будет открыто одно из этих предсказываемых мною тел, иметь возможность окончательно увериться самому и уверить других химиков в справедливости тех предположений, которые лежат в основании предлагаемой мною системы».
С другой стороны, открытый закон говорил о том, что нечего искать какой-либо неизвестный щёлочной металл, скажем, между натрием и калием; или пытаться обнаружить элементы, которые по своим свойствам и атомному весу могли бы расположиться между азотом и кислородом. Таких элементов в природе нет — так говорил закон Менделеева.
Но так ли всё это обстоит в действительности?
Слово было за будущим. Подтвердит ли оно научное предвидение Менделеева?