Удивительный парадокс. Несмотря на то что за последние 100 лет наблюдений в косматой «шевелюре» комет не осталось, кажется, ни одного не сфотографированного и не промеренного «волоска», никто из астрономов не смог предсказать главного: как выглядят их ядра, скрываемые непроницаемой газопылевой вуалью.
Ясно, что создатели космических зондов стремились заглянуть за вуаль кометной атмосферы, провести эксперименты в околоядерной зоне. Но полет «впритирку» к ядру, то и дело взрывающемуся пылевыми протуберанцами, чреват серьезной опасностью: крупные, массой до грамма пылевые частицы, врезаясь на скорости 78 км/с даже в «бронированную» обшивку космороботов, могли повредить его жизненно важные узлы. Разумеется, в случае удачи подобной космической миссии телевизионные системы, как говорится, «в упор» могли рассмотреть ядро «небесной странницы». Однако расчеты показывали, что в этом варианте вероятность поражения весьма велика.
Разумеется, существовала и другая крайность: разминуться с кометным ядром на сравнительно безопасном (скажем, в несколько десятков тысяч километров) расстоянии и тем самым наверняка уберечь приборы и панели солнечных батарей АМС от сокрушающей бомбардировки космической пылью. Конечно, в случае «непыльного сближения» объем добытой космороботами информации был бы гораздо скромнее.
Авторы проекта «Венера — Галлей» избрали тактику пролета, оказавшуюся оптимальной. «Вега-1» подошла к ядру кометы Галлея на расстояние 8912 км, а «Вега-2» — 8036 км.
В результате собрана уникальная научная информация, полная обработка которой, как считают специалисты, займет несколько лет. Наиболее ценная ее часть — свыше полутора тысяч портретных снимков кометы Галлея — передавалась на Землю в реальном времени. Подобный межпланетный репортаж из точки, удаленной от нашей планеты на 170 млн. км, советским космороботам удалось провести первым в мире.
Однако сколь ни искусны оказались телевизионные системы «Вег», автоматически «загонявшие» в кадр весьма капризный природный объект, умело менявшие и подбиравшие фильтры и экспозиции, комета Галлея не спешила расставаться со своими тайнами.
Лишь компьютерная детальная обработка изображения кометного ядра, маскируемого мощными газопылевыми выбросами — джетами, позволила определить его контуры и размеры, отражательную способность и другие параметры.
Итак, перед нами тело неправильной формы длиной 16 км и около 8 км в поперечнике. Внешняя схожесть этой «картофелины» с марсианскими спутниками Фобосом и Демосом (и не исключено, с некоторыми малыми спутниками Сатурна и Урана) основательно подкрепила гипотезу, предполагающую, что кометные ядра родились в той области Солнечной системы, где ныне находятся планеты-гиганты (и которые в процессе своего формирования и забросили свои осколки на далекие задворки Солнечной системы).
Отметим, что, поскольку у кометы Галлея период вращения вокруг собственной оси составляет около 53 ч — этим, кстати, объясняется, что снимки «Веги-1» и «Веги-2» несколько отличаются друг от друга, — мы имеем возможность взглянуть на «небесную странницу» с разных точек зрения и даже построить объемное изображение уникального природного объекта.
Далее, установлено, что комета Галлея, проходя вблизи Солнца, выбрасывала в космическое пространство миллионы тонн водяного пара ежесуточно — основного, по-видимому, вещества ее ядра.
Здесь необходимо сделать отступление. Дело в том, что приборному комплексу АМС впервые удалось зафиксировать излучение от внутренних областей кометы, испущенное так называемыми родительскими, то есть входящими в состав кометного ядра, молекулами. С Земли провести подобное наблюдение невозможно в принципе. Кроме того, «родительские молекулы» после обработки ультрафиолетовым солнечным излучением химически видоизменяются, что также делает невозможным их «опознание».
На фоне мощных спектральных линий водяного пара отчетливо (хотя и намного слабее) проявились полосы углекислого газа и других, скорее всего углеводородных примесей. Что касается уже видоизмененных — «вторичных» — молекул, то среди них исследователи опознали хорошо знакомые по наземным наблюдениям гидроксил, циан, двухатомный углерод и т. д.
Вблизи Солнца комета обильно парила и пылила. Пылевые счетчики, скрупулезно подсчитывавшие каждую попавшую на их детекторы частицу, установили, что ежесуточно кометное ядро выбрасывало около миллиона тонн пыли! Причем наиболее интенсивные пылевые фонтаны приходились на зоны с особо мощными истечениями газов. Любопытно, что при таком расходе — около 100 млн. т на виток — это небесное тело массой около 200 млрд. т проживет еще не одно тысячелетие.
Итак, концепция «айсбергов» получила подтверждение? Не будем торопиться. Мешает один бесспорно установленный факт: оптическими измерениями установлено, что отражательная способность, или, как говорят, физики, альбедо ядра, имеет низкую — около 45% — величину.
Такое же альбедо наблюдается у колец Урана и недавно открытых его спутников, а также у темных областей Япета. Это свидетельствует, по-видимому, — о наличии первичного углистого вещества, аккреция (то есть выпадение под действием гравитации) которого произошла на самых ранних стадиях развития Солнечной системы.
Но это что-то очень мало похоже на поверхность ледяной глыбы. К тому же она… горячая! Этот факт установлен ИК-спектрометрами «Вег». Измерения показали, что температура излучающей области достигала 100 °C.
Возможно ли, чтобы ледяной панцирь айсберга, пусть даже и космического, мирно уживался с «пламенем» его поверхности?
Но вспомним потемневшие весенние сугробы на городских улицах, долго тающие под мартовским солнцем. Немногие знают, что поверхность сугроба разогревается до 20–30 °C, но благодаря отличным теплоизоляционным свойствам образовавшейся на нем пористой корочки из пыли, гари и копоти холод внутри него сохраняется многие дни…
Чем не модель кометы, позволяющая удачно разрешить многие противоречия? Кометное ядро — это водный лед, в кристаллическую решетку которого внедрились примесные молекулы. В этот лед, как показали эксперименты, вкраплены различные тугоплавкие частицы метеоритного происхождения. По мере бурного испарения льда на его поверхности скапливается черный пористый слой, обладающий низкой теплопроводностью. По-видимому, ядро покрыто коркой из высокополимерного органического вещества. Поглощая солнечное излучение, она часть энергии отражает (в ИК-диапазоне) в окружающее пространство, а часть тепла передает ледяному панцирю. Образующийся пар время от времени пробивается через поры оболочки, толщина которой, по разным оценкам, колеблется от нескольких миллиметров до нескольких сантиметров, а если это не удастся — взламывает ее. Тогда с поверхности ядра начинают бить мощные газовые струи, увлекающие за собой пылевые частицы. Очевидно, срок жизни слоя невелик: он полностью обновляется примерно за сутки.
Особо уникальные данные о составе кометного вещества собрал пылеударный масс-спектрометр «Пума», который проанализировал химический состав около 2000 каменистых и металлических частиц, выброшенных газовыми струями. Они оказались метеоритного происхождения, и в них преобладали натрий, магний, кальций, железо, кремний, а также вода и углерод. В этом весьма пестром и сложном перечне элементов и их распределении закодированы тепловые процессы, происходившие на ранних этапах образования Солнечной системы.
Анализ пылевых частиц убедительно продемонстрировал присутствие в них сложных органических соединений. По всей видимости, совокупность имеющихся данных о пыли позволяет сделать вывод о ее межзвездном происхождении.