В проблеме бесплодия гибридов можно различить два вопроса: 1) цитологический механизм бесплодия и 2) гено- и фенотипические причины бесплодия.
Рядом прекрасных исследований, произведенных прежде всего на бабочках (Federley Н., 1913; Pariser, 1927; Federley, 1915; Milari, 1917; Harrison a. Doncaster, 1919, и др.) было показано, что бесплодие гибридов бабочек F b, F 2 непосредственно связано с хромосомными неправильностями в процессе гаметогенеза у гибридов. Эти неправильности сводятся прежде всего к тому, что у гибридов либо вовсе не происходит конъюгации хромосом при редукционном делении либо она имеет место лишь между некоторым хромосомными парами.
Рис. 62. Половой аппарат трех бабочек Biston.
Справа — нормальной самки, слева — нормального самца, в середине — гибрида F b. Женские части — белые, мужские — покрыты точками; bc — bursa copulatrix; kdr — придат. железы; Ig — яйцеклад, od — яйцевод; оv — яичник; rs — семяприемник; v — вагина; de — ductus ejaculatnrius, sb — семенные пузырьки; sp — семенник; vd — семяпроводы; р — пенис; uc — ункус; va — вальвы (по Мейзенгеймеру).
Федерлей (Federley Н., 1913), скрещивая три вида бабочек Pygaera curtula, P. pigra и P. anachoreta, обнаружил, что у гибридов полученные от разных родителей хромосомы как правило не конъюгируют друг с другом и поэтому в гаметы переходит не редуцированное, а полное или почти полное число хромосом.
Паризер (Pariser, 1927), обработавшая цитологически совместные с Гольдшмидтом опыты по скрещиванию Saturnia pavonia × S. pyri. обнаружила те же явления. У S. pyri гаплоидное число хромосом 30, у S. pavonia — 29. У гибридов же в делениях созревания у самцов в экваториальных пластинках насчитывается не 29 и не 30 и не 59 (30+29) хромосом, но число, колеблющееся между 45 и 51, и частые неправильности приводят к очень пониженной плодовитости, падающей ниже 1 %. Возможно поэтому, что лишь полнодиплоидные сперматозоиды с 59 хромосомами оказываются способными к оплодотворению.
Совершенно такие же явления обнаружил Федерлей (1915) в третьей группе бабочек — у вилохвостов или гарпий (Cerura vinula × С. erminea), где число хромосом соответственно 21 и 28. На пластинках в делении созревания видно, что лишь часть хромосом вступает в конъюгации, давая биваленты (и может быть, судя по величине, даже триваленты), почему число хромосом в этой стадии несколько меньше, чем 21+28 = 49, например 34, 46 (рис. 63).
Рис. 63. Частичная конъюгация хромосом у F, Cerura vinula × С. erminea:
Слева чистые виды: V — vinula, E — erminea, остальные — 6 гибридов. Числа — число хромосом в пластиках гибридов видны уни-, би- и триваленты (по Федерлею).
Таким образом в результате нарушения процесса конъюгации гибридные гаметы оказываются: 1) диплоидными, содержащими полные гаплоидные наборы хромосом обоих видов (лучше — дигаплоидные) и 2) субдиплоидные, содержащие неполное суммарное количество хромосом обоих видов в случае либо частичной конъюгации либо неправильности митоза.
К чему приводят эти неправильности? Для плодовитости самих гибридов. F 1 наибольшее значение имеет то, что гаметогенез идет неправильно и образующиеся часто в большинстве субдиплоидные гаметы оказываются нежизнеспособными или неспособными к оплодотворению.
Если бы образовывались только диплоидные гаметы, то это могло бы не снизить плодовитости F 1, но зато эти диплоидные гаметы имели бы решающее значение для плодовитости следующих поколений. В самом деле у бабочек хромосомный механизм полоопределения таков, что самец имеет две Х-хромосомы при диплоидном наборе аутосом, а самки — один Х при диплоидном наборе аутосом. Обозначив аутосомы буквой А, имеем (не обращая внимания на Y-хромосому):
ХХАА — самец, ХАА — самка
Гаметы самца все одинаковы — ХА
Гаметы самки двух типов — ХА и А.
В случае отсутствия редукции гаметы самца будут ХХАА и, оплодотворив оба типа яиц, дадут такие зиготы:
ХХАА+ХА = ХХХААА; ХХАА+А = ХХААА.
Первая категория зигот будет триплоидными самцами; триплоидными — потому, что в них гаплоидный набор ХА повторен трижды, Самцами — потому, что у них пропорция 3Х:3А = 1Х:1А, т. е. такая же, как и у нормальных диплоидных самцов, где 2Х:2А тоже равняется 1X:1А.
Вторая же — категория не будет ни самцом ни самкой, так как у нее имеется пропорция 2Х:3А, в то время как у самок должно быть 1X:2А, а у самцов 2Х:2А. Если выразить пропорцию, приравняв всюду к 2Х, то легко заключить, что эта категория зигот будет стоять между самцом и самкой, т. е. будет интерсексом.
2Х:2А — самец
2Х:3А — интерсекс
2Х:4А— самка
Таким образом триплоиды могут быть либо самцами (ХХХААА), либо интерсексами (ХХААА), либо наконец, рассчитывая теоретически, сверхсамками (ХААА). Настоящих самок здесь быть не может.
При обратном скрещивании F 1 ×P мы получаем таким образом в случае образования диплоидных гамет вместо самок бесплодных интерсексов. Но и триплоидные самцы тоже не могут нормально размножаться, так как триплоидный набор хромосом не может быть правильно распределен в редукционном делении на две части. Правда, хромосомы-одного вида здесь в диплоидном состоянии, и они могут дать правильную редукцию. Но зато третий набор будет распределяться самым Неправильным образом, почему большинство гамет будет опять нежизнеспособным. Даже образование диплоидных гамет будет затруднительнее, чем в F 1. Если следовательно в скрещивание вводятся два вида, хромосомы которых оказываются неспособными давать конъюгацию с хромосомами другого вида, то это приводит к самому тяжелому расстройству плодовитости и обрекает F 1, почти на полное бесплодие несмотря на то, что по обычным зоотехническим расчетам такие гибриды будут уже 3 / 4 крови, т. е. стоят ближе к чистому виду, чем стояли 1 / 2 -кровные F 1.
Ботаники однако на базе подобных случаев достигли интереснейших результатов, получая не F b, a F 2. В самом деле у растений здесь возможно такое продолжение, при котором и самец и самка образуют диплоидные гаметы такого строения:
ХХ´АА´ × ХХ´АА´ (гибриды)
ХХ´АА´ × ХХ´АА´ (их диплоидные гаметы)
ХХХ´Х´ААА´А´ (зигота)
Образуется форма тетраплоидная, или правильнее дидиплоидная (амфидиплоидиая), в которой собраны вместе оба полных диплоидных набора хромосом обоих видов. — Как показал опыт, такие дидиплоидные формы оказываются вполне жизнеспособными, часто мощно развитыми и притом вполне плодовитыми, так как они получают возможность давать вполне правильную конъюгацию. благодаря повторности гомологичных хромосом:
ХХХ´Х´ААА´А´ → ХХ´АА´/ ХХ´АА´
Гаметы получаются снова дигаплоидными. (ХХ´АА´), и снова дают при оплодотворении дидиплоидпую форму. Возникает морфологически и физиологически «новый вид».
Прекрасный пример этого мы имеем в полученном Карпеченко гибриде редька × капуста, гибриде Primula kewensis и- др.
К сожалению в такой форме этот путь для зоологов закрыт, ибо гетерозиготный пол не может, дать необходимых для этого гамет. Здесь у животных, в частности у бабочек, схема будет такой:
ХХ´АА´ × ХАА´ (гибриды, самец и самка)
ХХ´АА´ × ХАА´ (диплоидные гаметы)
ХХХ´АА´АА´ (зиготы)
Этот потомок окажется всего лишь новым типом интерсекса, имея пропорцию 3Х:4А. Сопоставляя с предыдущими, паходим его место:
12Х:12А, или 2Х:2А самец
9Х:12А, или 3Х:4А интерсекс
8Х: 12А, или 2Х:3А интерсекс
6Х:12А, или 1X:2А самка