Для того, чтобы быть уверенными, что при сборке котла случайно не будут превзойдены критические размеры, непрерывно производились измерения нейтронной активности. Эти измерения служили также для изучения свойств размножения нейтронов и давали возможность предсказать, где будет достигнута критическая точка.
Для измерения интенсивности реакции можно применять любой детектор нейтронов или γ-лучей. Нейтронные детекторы лучше, так как они быстрее реагируют и не подвержены влиянию излучений продуктов деления после прекращения экспериментов. Нейтронные детекторы (счетчик с трехфтористым бором) и ионизационные камеры для измерения γ-лучей были расположены внутри и вокруг котла. Некоторые из ионизационных камер применялись для приведения в действие регистрирующих приборов и автоматических аварийных приспособлений.
В самом котле измерения производились с помощью детекторов двух типов. Счетчик с трехфтористым бором вставлялся в щель на расстоянии в 43" от основания; с этим счетчиком производились частые отсчеты. Кроме того, фольга из индия каждый вечер облучалась в положении, по возможности самом близком к эффективному центру котла, а индуцированная активность фольги измерялась на следующее утро и сравнивалась с отсчетами счетчика с BF3.
Результаты подобных измерений могут быть выражены двояким образом. Так как число вторичных нейтронов, образовавшихся в процессе деления, постоянно возрастает по мере того, как котел строится, то активность А, индуцированная в стандартной фольге индия в центре, будет постоянно возрастать с увеличением числа слоев котла. Как только эффективное значение коэффициента размножения превысит единицу, А будет возрастать теоретически до бесконечности. Это приближение к бесконечности трудно наблюдать, и поэтому применяется другой способ выражения результатов. Предположим, что промежутки решетки и чистота материалов графито-урановой конструкции таковы, что коэффициент размножения сферы бесконечных размеров был бы в точности равен единице. Тогда, для реальной сферы подобной же конструкции, но конечного радиуса, активация детектора, помещенного в центре, была бы пропорциональна квадрату радиуса. Оказалось возможным определить соответствующий эффективный радиус R эфф для реального котла в каждой из стадий его сборки. Отсюда вытекало, что если бы коэффициент k ∞ был точно равен единице в среднем для решетки в котле, то активность A детектора в центре возрастала бы с возрастанием R эфф таким образом, что (R эфф ) 2 /A оставалось бы постоянным. Если бы k∞ для решетки было больше единицы, то при приближении
Рис. 7. Число законченных слоев
размеров котла к критическому значению, т. е. при приближении значения k эфф к единице, А должно было бы стремиться к бесконечности и, следовательно (R эфф ) 2 /A — стремиться к нулю. Экстраполируя кривую зависимости (R эфф ) 2 /A от размера котла, т. е. от числа слоев до точки ее пересечения с осью абсцисс, можно предсказать, в каком слое k эфф станет равным единице. Такая кривая, изображенная на рис. 7, показывает, в каком слое достигаются критические размеры. Менее удобный, но более прямой способ записи результатов изображен на рис. 8, который показывает рост активности нейтронов котла с увеличением числа слоев.
При сборке котла, значительно ранее достижения критического слоя, в соответствующие щели были вставлены кадмиевые полосы.
Рис. 8. Число законченных слоев
Они вынимались по одному разу в день, с надлежащими предосторожностями, чтобы не пропустить момента приближения к критическим условиям. Так производилась постройка котла, пока не был уложен критический слой.