IX (p. 135)
Ad eumdem commentarium.
QUÆSTIO SECUNDA BACHETI: Datis duobus cubis, invenire duos alios, quorum differentia æquet summam datorum.
Canon: Utrumque datorum cuborum ducito ter in latus alterius, productos divide per intervallum cuborum, et minori quotienti adde majus latus, atque a majore quotiente aufer minus latus; summa et residuum exhibebunt quæsitorum latera cuborum.
QUÆSTIO TERTIA BACHETI: Datis duobus cubis, invenire alios duos, quorum differentia æquet datorum differentiam. Oportet autem duplum minoris excedere majorem.
Canon: Productum ex utroque cubo ter in latus alterius divide per summam cuborum: a majore quotiente aufer minus latus, a minore quotiente aufer majus latus, relinquentur latera quæsitorum cuborum.
Huius quæstionis determinationem non esse legitimam simili quâ usi in primâ quæstione sumus operatione aperiemus.
Imo ex supradictis quæstionem quam Bachetus ignoravit, feliciter construemus, datum numerum ex duobus cubis compositum in duos alios cubos dividere, idque infinitis modis per operationum continuatam ut supra monnuimus, iterationem.
Sint duo cubiquibus alij duo æquales inveniendi 8. et 1. primum ex quæstione secunda quærantur duo cubi quorum differentia æquet summam datorum, eruntque 8000 / 343 et 4913 / 343 Quia duplum minoris excedit maiorem, res deducitur ad tertiam quæstionem, quæ demum reducetur ad primam et constabit propositio, Si velis secundam solutionem rursus quæstio redibit ad secundatm etc.
Ut autem pateat quæstionis tertiæ deterviniationem non esse legitimam. datis duobus cubis 8. et 1. inveniendi alij duo quorum differentia æquet differentiam datorum. Sanè Bachetus impossibilem hanc quæstionem pronuntiaret, cubi tamen duo per nostram methodum inventi sunt sequentes quorum nempe differentia æquatur 7. differentire 8. et 1. Cubi autem illi duo, sunt 2024284625 / 6128487 et 1981385216 / 6128487. latera ipsorum 1265 / 183. et 1256 / 183.
Перевод:
Условие, наложенное на задачу 3, незаконно, как мы покажем, действуя так же, как и в случае задачи 1.
Более того, на основании вышеизложенного мы благополучно решим задачу, неизвестную Баше: Данное число, составленное из двух кубов, разложить на два других куба, и это бесконечным числом способов, путем непрерывного повторения операций, как это было указано выше.
Пусть надо найти два куба, сумма которых равна сумме других двух 8 и 1. Сначала на основании задачи 2 найдем два куба, разность которых равна сумме данных; они будут 8000/343 и 4913/343.
Так как удвоенный меньший превосходит больший, то дело сводится к задаче 3, от которой перейдем к задаче 1 и получим решение.
Если мы хотим получить второе решение, то возвращаемся к задаче 2 и т. д.
Чтобы показать, что условие, наложенное на задачу 3, незаконно, возьмем два куба 8 и 1 и найдем два других куба, разность которых равна разности данных.
Баше объявил бы, конечно, что задача невозможна; однако нашим методом найдены два куба, разность которых равна 7, т. е. разности 8 и 1. Эти два куба таковы, 2024284625/6128487 и 1981385216/6128487, а их стороны равны 1265/183 и 1256/183.