VIII (p. 133)
Ad commentarium in quæstionem II Libri IV.
QUÆSTIO DIOPHANTI: Invenire duos numeros, ut illorum intervallum datum faciat numerum et cuborum quoque ab ipsis ortorum sit quod præscribitur intervallum.
QUÆSTIO PRIMA BACHETI: Datis duobus cubis, invenire duos alios, quorum summa æqualis sit datorum intervallo. Oportet autem duplum minoris cubi non superare majorem.
Canon: Utrumque datorum cuborum ducito ter in latus alterius, productos divide per summam cuborum, a majore quotiente aufer minus latus, et minorem quotientem aufer a majore latere; relinquentur cuborum quæsitorum latera.
Determinationem operationis iteratione facillime tollimus et generaliter tum hanc quæstionem turn sequentes quæstiones construimus, quod nec Bachetus nec ipse Vieta[9] expedire potuit. Sint dati cubi 64 et 125. inveniendi alij duo quorum summa æqualis sit datorum intervallo. Ex quæstione tertia folio sequenti[10] quærantur duo alij cubi quorum differentia æquet differentiam datorum. Illos Bachetus invenit et sunt 15252992 / 250047 et 125 / 250047 isti duo cubi ex constructione habent intervallum æquale intervallo datorum. Sed isti duo cubi inventi per quæstionis tertiæ operationem possuntiam transferri ad quæstionem primam cum duplum minoris non superet maiorem, datis itaque his duobus cubis quærantur alij duo quorum summa æquetur intervallo datorum, id quidem licet per determinationem huius quæstionis primæ. At intervallum datorum horum cuborum est per quæstionem tertiam æquale intervallo cuborum prius sumptorum 64. et 125. igitur construere nihil vetat duos cubos quorum summa æqualis sit intervallo datorum 64. et 125. quod sanè miraretur ipse Bachetus. Imo si tres istæ quæstiones eant in circulum et iterentur in infinitum, dabuntur duo cubi in infinitum idem præstantes, ex inventis enim ultimo duobus cubis quorum summa æquet differentiam datorum, per quæstionis secundæ operationem quæremus duos alios quorum differentia æquet summam ultimorum, hoc est intervallum priorum et ex hac differentiâ rursum quæremus summam et sic in infinitum.
Перевод:
Повторяя операцию, легко можно избавиться от условия [т. е. от ограничения, — И. Б. ] и решить общим образом как этот вопрос, так и следующие, чего не смогли сделать ни Баше, ни сам Виет.
Пусть даны два куба 64 и 125; требуется найти два других куба, сумма которых была бы равна разности данных.
Найдем методом, данным Баше при решении задачи 3 (на следующей странице) два других куба, разность которых будет равна разности двух заданных. Баше нашел их, это 15252992/250047 и 125/250047. По построению разность их равна разности двух данных кубов; но, после того как они найдены методом задачи 3, поскольку удвоенный меньший не превосходит большего, их можно взять в качестве данных задачи 1.
Таким образом, мы получим два данных куба и будем искать два других, сумма которых равна разности данных; так как условие, указанное для задачи 4, выполнено, то решение можно получить без затруднений. Но разность кубов, найденных путем решения задачи 3, равна разности двух первоначально заданных кубов 64 и 125; итак, ничто не мешает построить два куба, сумма которых равна разности данных 64 и 125, что, конечно, удивило бы самого Баше.
Более того, проходя по кругу эти три задачи и повторяя это до бесконечности, получим бесконечно много пар кубов, удовлетворяющих одному и тому же условию; действительно, после того как мы нашли два куба, сумма которых равна разности данных, мы можем методом задачи 2 найти два других, разность которых равна сумме наших двух кубов, т. е. разности первоначально данных; от разности мы перейдем к сумме и так до бесконечности.