Открытие клетки связано с изобретением микроскопа. Невооружённым глазом можно видеть органы человека, животных или растений, т. е. сердце, лёгкие, мышцы, кости, стебель, лист и пр. Микроскоп же показывает, что органы состоят из мельчайших частичек, которые называются клетками.

Как учёные узнали о существовании клеток и какое значение для науки имело это открытие?

До того как были открыты клетки, учёные имели очень смутное и даже неверное представление о живой природе. Живая природа казалась им разделённой на два совершенно различных «царства»: «царство животных» и «царство растений», которых, как думали тогда учёные, ничто не объединяет.

Микроскоп, изобретённый около 300 лет тому назад, позволил увидеть, что между всеми живыми существами имеется много общего. Это общее заключается прежде всего в их клеточном строении.

В 1667 году Роберт Гук, работая над усовершенствованием микроскопа и желая испытать силу его увеличения, положил под микроскоп тонкий срез пробки и увидел, что она состоит из мелких ячеек, напоминающих собой пчелиные соты. Эти ячейки он и назвал клетками (рис. 1).

В дальнейшем учёные открыли клетки как в растительных, так и в животных организмах. В 1827 году русский учёный П. Ф. Горянинов впервые создал теорию, согласно которой все высшие растительные организмы состоят из клеток. В 1837 году он распространил клеточную теорию и на животных. В 1838 году эта теория была подтверждена немецким ботаником Шлейденом, а годом позднее её подтвердил зоолог Шванн.

Открытие клетки и разработка клеточной теории строения живых организмов имели огромное прогрессивное влияние на развитие биологии и медицины.

«Только со времени этого открытия, — указывал Ф. Энгельс, — стало на твёрдую почву исследование органических, живых продуктов природы… Покров тайны, окутывавший процесс возникновения и роста и структуру организмов, был сорван. Непостижимое до того времени чудо предстало в виде процесса, происходящего согласно тождественному по существу для всех многоклеточных организмов закону»[6].

Рис. 1. Срез пробки. Изображение клеток

Клетка представляет собой комочек живого вещества, так называемой протоплазмы — студенистого вещества, окружённого оболочкой. Внутри клетки находится тельце, клеточное ядро.

Ядро играет очень большую роль в жизни клетки. Если ядро разрушить, клетка может погибнуть. Форма ядра обычно тесно связана с формой самой клетки. В вытянутой длинной клетке и ядро вытянутое, длинное; в плоской клетке ядро плоское, в шарообразной — оно шарообразное. На протяжении жизни клетки ядро изменяет свой вид. Особенно глубокие изменения происходят в ядре во время так называемого митотического (непрямого) деления клетки, о котором будет рассказано ниже.

Обычно в клетке находится одно ядро. Но существуют живые образования с множеством ядер. К таким образованиям относится мышечное волокно. Существуют совершенно безъядерные клетки, как, например, красные кровяные клетки человека, так называемые эритроциты, которые в организме играют роль переносчиков кислорода из лёгких в другие органы.

В клетках бактерий ядерное вещество распределено равномерно по всей клетке, а при старении бактерий оно собирается в кучки.

Та часть протоплазмы, которая окружает ядро, обычно называется цитоплазмой. В цитоплазме клетки можно видеть множество зёрнышек различной величины и формы, имеющих, повидимому, большое значение в жизни клетки для обмена веществ. Живое вещество клетки можно хорошо рассмотреть, положив под микроскоп, например, кусочек стебля или листа крапивы. Край такого кусочка с жгучими волосками крапивы может служить прекрасным объектом для наблюдений. Обычно волосок состоит всего из одной клетки большого размера. Снаружи виден толстый и прочный футляр из целлюлозы[7]. Такими целлюлозными стенками обыкновенно окружены все растительные клетки.

Разглядывая живой жгучий волосок крапивы, легко можно заметить, что живое вещество не заполняет всю клетку, а распределяется около целлюлозных стенок внутри футляра и протягивается в виде тяжей от одной стенки к другой. Такое распределение протоплазмы встречается только в растительных клетках. В животных клетках протоплазма заполняет всю клетку.

Протоплазма, или живое вещество клетки, представляет собой очень вязкую жидкость, обладающую подвижностью. В клетке волоока крапивы подвижность протоплазмы хорошо заметна по движению твёрдых частичек, которые в ней плавают в одном или другом направлении.

Протоплазма клетки состоит из многих веществ, но главным из них является белок или, вернее, белки (в организме имеется очень большое количество разнообразных белков). Белок представляет собой очень сложное вещество, основным свойством которого является обмен веществ. Живая частица белка беспрерывно изменяется, одновременно разрушаясь и созидаясь в различных своих частях.

Простейший обмен веществ существует и в неживой природе. Например, процесс ржавления железа — это обмен веществ между железом и окружающей средой. Но в неживой природе обмен веществ приводит к разрушению: когда образуется ржавчина, железо не остаётся железом, а превращается в другое вещество — в окись железа.

В результате обмена веществ живой организм не только сохраняется, но и развивается, растёт и размножается благодаря белку, который во взаимодействии с другими веществами является главной составной частью обмена веществ в организме.

Благодаря своей неустойчивости белок может переходить из одного состояния в другое: он находится то в жидком виде, то в виде студня, то в виде волокнистого или зернистого осадка. Такие превращения белок может претерпевать в клетке в результате взаимодействия с теми или иными веществами в процессе нормальной жизнедеятельности. Эти явления можно, например, наблюдать во время клеточного деления. Подобные же изменения могут быть вызваны в клеточном ядре и искусственно, путём механического раздражения или при воздействий на клетку различными веществами.

В зависимости от того, какую роль выполняют те или иные клетки в целом организме, они имеют соответствующий характер своего строения. Мышечные волокна, клетки крови (красные и белые кровяные шарики), клетки кожи — все они резко отличаются друг от друга как по форме своего строения, так и по той работе, к которой приспособлена и которую выполняет данная клеточная форма (рис. 2).

Каким образом клетки организма приобретают то или иное строение, приспособленное к характеру выполняемой ими работы, или, как говорят, функции? На этот вопрос наука полного ответа пока не даёт. Но на основании рассмотрения того, что в этом отношении биологам известно, мы можем сказать, что, повидимому, та или иная форма приобретается клеткой благодаря взаимодействию её белков с другими веществами и влиянию на эту клетку различных условий окружающей среды: разнообразных веществ, клеток-соседей, электрических влияний и многих

И других условий в организме, которых мы еще не знаем. Всё это приводит к выработке того рода обмена веществ, который необходим для выполнения клеткой определённой работы, например, для выделения железистыми клетками их секрета[8].

В зависимости от характера обмена веществ клетка вырабатывает те или иные продукты: одни железистые клетки выделяют слюну, другие — жёлчь, третьи — желудочный сок и т. д.

Рис. 2. Различные клетки животного организма

Обмен веществ может быть таков, что жизнедеятельность клетки выражается в её способности к сокращению и расслаблению, что наблюдается в мышечном волокне.

В организме наиболее сложно устроенных животных, в особенности в организме человека, наиболее важную роль играет нервная система, в частности нервная клетка.

Великие русские физиологи И. М. Сеченов и И. П. Павлов раскрыли роль нервной системы как главного регулятора жизненных процессов и психической деятельности человека. Свою работу нервные клетки могут выполнять, вследствие своеобразного характера их обмена веществ, благодаря которому нервная клетка обладает сильно выраженной способностью к возбуждению, и вследствие особой формы строения нервных клеток. Нервные клетки имеют длинные отростки, по которым проходит нервное возбуждение. Если нервный отросток приходит в соединение с мышечным волокном, то возбуждение вызывает сокращение волокна. При других условиях то же возбуждение вызывает иное действие. Придя, например, в соединение с железистой клеткой, оно вызывает в ней выделение определённых веществ.

Способностью к движению обладают не только мышечные клетки; эту способность имеют и другие клетки, например, белые клетки крови. Вытягивая часть своего бесформенного тельца вперёд и переливая постепенно всю свою протоплазму, белая кровяная клетка может передвигаться и проползать между другими клетками организма. Замечательный русский учёный И. И. Мечников подробно исследовал свойства белых кровяных клеток. Оказалось, что они могут захватывать при помощи своих отростков мелкие посторонние частички. Белые кровяные клетки чрезвычайно полезны для организма. Они захватывают и поглощают вредные микробы и этим спасают нас при заболеваниях от микробного заражения. Они появляются в несметных количествах в засоренной ране и поглощают там частицы попавшей грязи и бактерий, образуя так называемый гной.

На своей поверхности клетка большей частью имеет оболочку. Клеточная оболочка представляет собой поверхностный слой живого вещества протоплазмы клетки, изменившийся под влиянием среды, несколько более плотный, чем живое вещество внутри самой клетки.

Оболочки разделяют между собой отдельные клетки в организме животного. Тонкий слой оболочек не всегда можно увидеть в живом неповреждённом состоянии. Только после специальной обработки и окраски оболочек они становятся ясно видимыми.

В растительном организме, как уже было сказано, каждая клетка выделяет вокруг себя толстые и очень прочные стенки, состоящие главным образом из целлюлозы. Целлюлоза, или клетчатка, представляет собой вещество, необычайно устойчивое к всевозможным химическим воздействиям. Свойства целлюлозы дают возможность широкого использования её в лёгкой промышленности для производства искусственного шёлка, искусственной шерсти, целлулоида и пр.

Оболочки растительных клеток первыми обращают на себя внимание каждого, кто рассматривает растение под

микроскопом. Благодаря своей прочности стенки растительных клеток обычно остаются неизменившимися, когда их живое содержимое высыхает, умирает или так или иначе уничтожается (например, бактериями при гниении) Немудрено, что первые учёные, несмотря на плохое качество своих микроскопов и на отсутствие умения обращаться с необычайно нежными живыми объектами, заметили прежде всего целлюлозные стенки; на живое вещество клеток они тогда не обратили внимания. Рисунок 1 изображает именно эти грубые стенки растительной клетчатки.

Одно время многие учёные думали даже, что оболочки — это и есть самое главное, что имеется в живой клетке. Когда же обнаружили, что живым является содержимое клетки, а сами стенки обслуживают живую растительную клетку лишь в качестве футляра, состоящего из безжизненных продуктов выделения клеток, тогда некоторые учёные впали в другую крайность: они стали совершенно отрицать значение оболочки клеток у животных.

Рис. 3. Различные стадии (1–3) разрушения оболочек

Однако тщательное изучение вопроса об оболочках в нашей лаборатории показало, что животная клетка окружена оболочкой, которая образуется на поверхности молодых клеток. Вначале она бывает рыхлая и мало заметная; для её обнаружения достаточно тем или иным способом её прорвать (рис. 3). При разрыве оболочки жидкое содержимое клетки выливается наружу. Если к препарату прибавить раствор красок, то можно окрасить оболочку в один цвет, а содержимое клетки — в другой цвет.

При старении оболочка делается более тонкой и плотной.

Оболочки играют очень важную роль в жизни клеток, а следовательно, и в жизни всего организма. Они служат препятствием для веществ, которые могут извне попасть внутрь клетки, или для веществ самой клетки при переходе их в окружающую среду. Эти вещества могут быть важными и нужными для жизнедеятельности клетки или, наоборот, вредными, ядовитыми, способными привести клетку к гибели, к тому или иному нарушению её обмена веществ.

Рис. 4. Оболочки клеток: 1 — тонкие, однородные; 2 — зернистые; 3 — вакуолизированные

Оболочка обладает способностью пропускать через себя одни вещества и задерживать и видоизменять другие вещества. Эта способность оболочки называется избирательной проницаемостью.

От чего же зависит избирательная проницаемость? Оболочку клетки можно до некоторой степени сравнить с пергаментной бумагой, которая так же, как оболочка клетки, пропускает одни вещества и не пропускает другие. Пергамент — это мёртвый материал, имеющий очень мелкие отверстия — поры, благодаря которым через него, как через сито, проходят более мелкие частицы (молекулы) и задерживаются более крупные, что используется в практике для разделения веществ, например, для отмывания солей от белков.

Клеточная оболочка также частично обладает этими свойствами. Но бывают и исключения. Некоторые вещества, молекулы которых по размерам очень маленькие, не могут проникнуть в клетку. Другие же вещества, имеющие сравнительно крупные молекулы, проходят в клетку. Эта особенность поведения оболочки объясняется тем, что она является частью живого вещества клетки и состоит из белков и жироподобных веществ — липоидов. Характерная для белков неустойчивость, способность их изменять свои свойства под влиянием воздействия среды, сказывается и на свойствах оболочек.

Оболочки животных клеток так сильно и резко отзываются на всякие внешние влияния, что, зная, какое вещество и как влияет на оболочку, можно управлять её изменениями, вызывать её набухание, появление в ней зернистости или волокнистости (рис. 4). При прохождении через оболочку некоторые вещества могут сами изменяться и изменять оболочку.

Таким образом, можно сказать, что клеточная оболочка — это часть живой клетки, её важный орган.

Но как произошли сами клетки? Какова история клетки?