Вы знаете, конечно, что все окружающие нас тела состоят из мельчайших невидимых частиц — атомов. Число различных видов этих частиц невелико. Но они могут соединяться друг с другом в самых разнообразных комбинациях, образуя устойчивые группы — молекулы. Этим и объясняется то, что из небольшого количества различных видов атомов построен необычайно разнообразный мир окружающих нас тел.
Размеры отдельных атомов необычайно малы — они не превышают нескольких стомиллионных долей сантиметра. Понятно поэтому, что число частиц — атомов или молекул — в каждом куске вещества, с которым нам обычно приходится иметь дело, чрезвычайно велико. Вот, например, сколько молекул содержится в одной капле воды, считая по 20 капель в кубическом сантиметре: 1 600 000 000 000 000 000 000.
Это — тысяча шестьсот миллиардов раз по миллиарду частиц!
Судите сами, насколько мала масса каждой отдельной молекулы, каждого отдельного атома.
Несмотря на такие ничтожно малые размеры атомов и молекул, теперь об этих невидимых частичках известно очень многое. Учёные нашли, чему равна их масса, т. е. сумели определить вес отдельных атомов, подробно изучили многие свойства различных атомов и молекул.
А за последние пятьдесят лет физики установили, что атомы — это сложно устроенные миры.
Вот как построен атом. В центре атома находится электрически положительно заряженное ядро. Размеры этого ядра примерно в 100 000 раз меньше размеров самого атома. Величина заряда и масса атомного ядра различны у различных атомов. Вокруг ядра вращаются отрицательно заряженные электрические частички — электроны. Они образуют так называемую электронную оболочку атома. Электроны представляют собой своего рода «атомы отрицательного электричества»: эти мельчайшие частички вещества несут с собой мельчайший отрицательный электрический заряд. Заряды всех электронов одинаковы.
Число электронов у различных атомов также различно. Например, в атоме водорода имеется только один электрон, в атоме гелия — два, кислорода — восемь и т. д.
Суммарный заряд электронов равен заряду ядра. Таким образом, любой атом в нормальном своём состоянии электрически нейтрален — заряды противоположных знаков нейтрализуют друг друга.
Мы не будем в этой книжке говорить о том, как устроено атомное ядро и какие силы связывают ядро атома и его оболочку. Об этом подробно рассказывается в других книжках[1]. Чтобы понять сущность фотоэлектрического явления, нам достаточно и этих кратких сведений об атоме.
А теперь, вспомнив, как устроен атом, нетрудно разобраться и в том, как осуществляется электризация тел.
При электризации тел всегда производится разделение положительного и отрицательного зарядов. Как это может происходить? Очевидно, что для этого необходимо из электронных оболочек атомов одного тела «изъять» каким-либо путём по одному или по несколько электронов и «пересадить» эти электроны в электронные оболочки атомов другого тела.
Что получится в этом случае? Атомы, у которых будут «изъяты» один или несколько электронов, уже не будут нейтральными. Положительный заряд их ядра будет больше, чем общий отрицательный заряд электронной оболочки. Стало быть и атом в целом будет положительно заряженным. Такая частица называется положительным ионом. И вот, если число положительных ионов в теле достаточно велико, то и всё тело в целом будет заряженным положительно.
И напротив, атомы с лишними, «чужими» электронами имеют отрицательный заряд. Они называются отрицательными ионами. Когда таких отрицательных ионов в теле много, оно в целом заряжено отрицательно.
«Изъятые» электроны могут остаться в теле и в «свободном» состоянии; в этом случае они не будут связаны с какими-либо определёнными атомами.
Таким образом, электризация тела всегда сводится к тому, что часть нейтральных атомов превращается в заряженные частицы — ионы.
Для этого, конечно, необходимо затратить какую-то работу. Ведь электроны, входящие в состав атома, удерживаются в нём электрическими силами. Поэтому, чтобы вырвать из электронной оболочки атома хотя бы один электрон, т. е., чтобы, как говорят, ионизовать этот атом, надо преодолеть связывающие атом электрические силы. А это можно сделать, только затратив определённое количество энергии, т. е. совершив работу. Эта работа называется «работой ионизации» атома. Она может быть осуществлена, например, за счёт тепловой энергии, иными словами — путём нагрева тела до высокой температуры. Можно ионизовать атомы и за счёт энергии света.
Итак, что же мы узнали? Во-первых, то, что атомы, а значит, и молекулы всех веществ построены из электрически заряженных частиц. И, во-вторых, если какое-либо тело приобретает электрический заряд, то это всегда означает, что атомы этого тела либо потеряли часть своих электронов, либо, наоборот, приобрели некоторое количество лишних электронов. Эти лишние электроны либо присоединились к его атомам, образовав отрицательные ионы, либо остались в теле в свободном состоянии, не будучи связанными с какими-либо определёнными атомами.
Здесь же надо сказать и о том, что «свободные», несвязанные электроны всегда имеются в некоторых материалах и без какой-либо электризации. К таким веществам, в частности, относятся все металлы. В любом куске металла всегда имеется значительное количество электронов, оторванных от своих ядер в результате взаимодействия между отдельными атомами. Такие «свободные» электроны принадлежат уже не какому-то одному атому, а куску металла в целом. Такие электроны могут свободно «путешествовать» по всему куску металла.
Этим и объясняется хорошая электропроводность металлов — ведь электрический ток в металлах и есть движение таких «свободных» электронов от отрицательного электрода к положительному под действием электрических сил.
Испариться из куска металла, вылететь в окружающее пространство «свободные» электроны не могут; этому мешают силы, действующие на поверхности твёрдых тел. Чтобы вырвать из металла свободный электрон наружу, нужно, как и в случае ионизации атомов, затратить некоторую работу. Эту работу называют «работой выхода». Величина «работы выхода» меньше величины «работы ионизации» отдельного атома.
Теперь, зная в чём заключается сущность электризации тел, вы уже без труда можете понять, что именно происходит при фотоэлектрическом эффекте.