XVIII (p. 180)
Ad commentarium in quæstionem XXXI Libri IV.
QUÆSTIO: Invenire quatuor numeros quadratos, quorum summa, cum summa laterum conjuncta, numerum imperatum faciat[19].
Imo propositionem pulcherrimam et maxime generalem nos primi deteximus. Nempe omnem numerum vel esse triangulum vel ex duobus aut tribus triangulis compositum esse quadratum vel ex duobus aut tribus aut quatuor quadratis compositum esse pentagonum, vel ex duobus tribus quatuor aut quinque pentagonis compositum et sic deinceps in infinitum in hexagonis heptagonis et polygonis quibuslibet enuntianda videlicet pro numero angulorum generali et mirabili propositione; eius autem demonstrationem quæ ex multis varijs et abstrusissimis numerorum mysterijs derivatur hic apponere non licet, opus enim et librum integrum huic operi destinare decrevimus et Arithmeticen hac in parte ultra veteres et notos terminos mirum in modum promovere.
Перевод:
Более того, мы открыли впервые прекраснейшее и наиболее общее предложение, а именно: каждое число является либо треугольным, либо суммою двух или трех треугольных; либо квадратом, либо суммою двух, трех или четырех квадратов; либо пятиугольным, либо суммою двух, трех, четырех или пяти пятиугольных, и так далее до бесконечности, для шестиугольных, семиугольных или любых многоугольных чисел; это чудесное и общее предложение может быть высказано, очевидно, для любого числа углов.
Здесь невозможно дать его доказательства, которое зависит от многочисленных и сокровеннейших тайн науки о числах; мы намерены посвятить этому предмету целую книгу и продвинуть удивительным образом эту часть Арифметики за пределы, известные в древности.