Снова замечаем, что частные произведения дают единицы од-

ного и того же разряда, именно — десятые доли.

За м е чан и е. В том случае, когда высший разряд множителя единицы,

новый прием умножения позеотяет легко определить высшие и низшие разряды

произведения.

Так, например, умножая 43,3 на 3,18. видим, что высший разряд произведе-

ния получается от умножения 4 десятков на З еднницы, и мы имсем 12 десят-

кос, т. е. сотнн.

Низший разряд произведения получим, если умножим З десятых на 8 сотых.

ттолучим 24 тысячных; итак, низший разряд — тысячные дол!т.

Если высший разряд во множителе не единицы, то можно запятую передви-

нуть так, чтобы перед запятой оказалась одна значащая цифра. Одновременно

придется передвинуть запятую во множимом в противоположном направленнн,

Например: 376.4,86. Определите ВЫСШИе и низшие разряды про-

изведения.

S 85. Сокращенное умножение,

Дано: диаметр круга Принимая п вычислите

длину окружности. Имеем:

Надо найти произведение двух приближенных чисел с воз-

можно большей степенью точности, не вычисляя ненужных

ц.;фр.

Множители даны с тремя точными цифрами каждый. Произ-

ведение будет иметь две точных цифры, трет: я будет уже сом-

нительной.

Принято, однако, оставлять одну сомнительную цифру в про-

изведении. Произведите умножение.

Обычный способ.

3,14

1:8l2

4?53

Цифры, стоящие направо от вертикальной черты,

являются сомнительными, а потому должны быть от-

брошены в окончательном результате.

Сокращенный способ.

45,8

8,14

4,5

142,2

(умножаем 45;3 на З единицы, получаем 135,9)

(умножаем 45, т. е. без отной цифры, на 0,1, получаем 4,5)

(умножаем 4 десятка, т. е. множимое без двух цифр, на 0,04, полу-

чаем 1,6, прибавляем десятые. от умноження 5 на 0,04, имеем 1,8)

142

91