Снова замечаем, что частные произведения дают единицы од-
ного и того же разряда, именно — десятые доли.
За м е чан и е. В том случае, когда высший разряд множителя единицы,
новый прием умножения позеотяет легко определить высшие и низшие разряды
произведения.
Так, например, умножая 43,3 на 3,18. видим, что высший разряд произведе-
ния получается от умножения 4 десятков на З еднницы, и мы имсем 12 десят-
кос, т. е. сотнн.
Низший разряд произведения получим, если умножим З десятых на 8 сотых.
ттолучим 24 тысячных; итак, низший разряд — тысячные дол!т.
Если высший разряд во множителе не единицы, то можно запятую передви-
нуть так, чтобы перед запятой оказалась одна значащая цифра. Одновременно
придется передвинуть запятую во множимом в противоположном направленнн,
Например: 376.4,86. Определите ВЫСШИе и низшие разряды про-
изведения.
S 85. Сокращенное умножение,
Дано: диаметр круга Принимая п вычислите
длину окружности. Имеем:
Надо найти произведение двух приближенных чисел с воз-
можно большей степенью точности, не вычисляя ненужных
ц.;фр.
Множители даны с тремя точными цифрами каждый. Произ-
ведение будет иметь две точных цифры, трет: я будет уже сом-
нительной.
Принято, однако, оставлять одну сомнительную цифру в про-
изведении. Произведите умножение.
Обычный способ.
3,14
1:8l2
4?53
Цифры, стоящие направо от вертикальной черты,
являются сомнительными, а потому должны быть от-
брошены в окончательном результате.
Сокращенный способ.
45,8
8,14
4,5
142,2
(умножаем 45;3 на З единицы, получаем 135,9)
(умножаем 45, т. е. без отной цифры, на 0,1, получаем 4,5)
(умножаем 4 десятка, т. е. множимое без двух цифр, на 0,04, полу-
чаем 1,6, прибавляем десятые. от умноження 5 на 0,04, имеем 1,8)
142
91