180'

Так как а 30', то площадь пра-

6. R • зоо

— з cos300.

вильного шестиугольника равна

¯¯i¯¯

В общем виде площадь одного треугольника

2

пло-

щадь же правильного многоугольника, имеющего п сторон, равна

П • апКп

2

но п • ап — периметр данного многоугольника, который обозначают

буквой рп.

Следовательно площадь правильного многоугольника

¯2

Итак площадь правильного многоугольника равна половине произ-

ведения его периметра на апофему.

Задаци.

1. Вычислить площадь правильного пятиугольника, считая радиус

описанного круга известным.

2. То же самое для правильного восьмиугольника и десятиугольннка.

3. Имеются два различных правильных шестиугольника: радиус одного

из а другого—г. Ответьте на следующие вопросы: а) Равны ли

углы одного из них углам другого? б) Можно ли сказать, что стороны

одного из них пропорциональны сторонам другого? в) Подобны ли они?

г) Докажите, что периметры их пропорциональны нх радиусам, а пло-

щади— квадратам их радиусов?

Вычисление сторЬн правильного описанного многоугольника.

Около окружности описан • правильный многоугольник. Легко

показать, что прямые, соединяющие его вершины с центром О,

д

В

с

черт. 82.

Черт. 83.

делят его углы пополам, например (черт. 82) АО — биссектриса

угла ВАС. В самом деле, прямоугольные треугольники 0DA и ОАЕ

109